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ABSTRACT

Overexploitation of marine resources by human activities has become a pandemic issue nowadays. High fishing rates for
example, may lead to the extinction of marine populations. In this paper, we introduce a mathematical model of prey-predator
system for marine ecosystem with fishing rates for the case of Terengganu state. For this model, we use squids as prey while
snapper fish as predator. The objectives of this paper are to analyze the sustainability of equilibrium populations of squids
and snapper fish using stability analysis and to show the effect of fishing rates on both of these populations. This model
shows that there are four potential equilibria solutions where both populations of squids and snapper fish may be extinct,
mutual exclusions where either one of the species dies out as well as coexistence of both populations. The results for stability
analysis reported that the equilibrium of coexistence of both populations was stable while the other was unstable. This means
that populations of squids and snapper fish are estimated to sustain in the future with the current fishing activities in Terengganu.
Hence, we conjectured that in order to guarantee both populations continue to exist, the fishing activities in Terengganu must
be restricted within certain range of parameters that is lower than the population growth rates.
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INTRODUCTION

Overexploitation of marine ecosystems by human
activities has been recognised as a global issue by
the public worldwide including Malaysia. High
fishing rates for example, has been evident as one
of the determinants to the extinction of marine
populations. This matter leads to the question of how
well the systems can be managed in order to sustain
the marine populations from extinction. To answer
this question, prey-predator dynamics model is
deemed as one of the prominent tools to investigate
the dynamics processes of the systems.

The earliest mathematical model describing
interacting population between prey and predator
was proposed by Alfred Lotka in 1925 and Vito
Volterra in 1926. Their model of prey-predator

system is called as a Lotka-Volterra (Volterra,
1926). The equation of Lotka-Volterra model is
given by

where r, a, d and t represent the prey growth rate,
predator attack rate, predator death rate and time
respectively. The notations of  and  denote the
rates of change of prey and predator populations
respectively over time.

There were reasonably numerous dynamics
models have been developed to investigate the
interaction between prey and predator in marine
ecosystems. Most of them were associated with
fisheries. Spencer and Collie (1995) proposed a



236 SQUIDS-SNAPPER FISH DYNAMICS MODELWITH FISHING EFFECTS

Table 1. Description and values for variables and parameters for squids-snapper fish model in (2) with
fishing rates values obtained from Malaysia Department of Fisheries in Terengganu

Variables/Parameter Description Values

x Number of squids population unknown
y Number of snapper fish population unknown
t Time (years) [0, 50]
r Squids growth rate 6.5
s Snapper fish growth rate 0.5
K Carrying capacity shared by both squids and snapper fish 100
α Snapper fish attack rate 0.006
E Fishing rate for squids 0.05
H Fishing rate for snapper fish 0.05

Fig. 1. Flow diagram of the model (2).

model on exploited marine fish population where
the growth rate of predator depends on predation
and alternative prey. Moreover, Das et al. (2009)
investigated the effect of toxic substance on the
prey-predator fishery. Essentially, the idea of
incorporating the effect of toxins on prey and
predator was enthused from Smith (1974). Also, Lv
et al. (2013) investigated a prey-predator model,
which consists of two preys and a predator, where
one prey fish species is placed inside an unreserved
area while the other in a reserved area. In the
reserved area, predation and fishing are prohibited.
These two types of areas have also been considered
by Biswas et al. (2017) where they focused on the
dynamics of fish production such as the existence
of equilibrium points as well as the conditions of
stability and instability of their proposed model. A
recent study by Keong et al. (2018a) has found the
effects of toxicity on both prey and predator species
in fishery model.

In this paper, our main objective is to develop
a marine prey-predator model for squids and snapper
fish with fishing effects. Consequently, we will
analyze the stability of both populations for the
chosen values of parameters as well as presenting
the effect of fishing rates on both populations by
varying a parameter in the model. We will apply this
model to real data of fish landings in Terengganu
obtained from the Malaysia Department of Fisheries.

A mathematical model for squids-snapper fish
will be developed by incorporating two types of
parameters. The first includes life-history charac-
teristics such as prey growth rate r, predator growth
rate s, predator attack rate a and carrying capacity
K. The second includes management criteria such
as fishing rates on prey and predator (denoted by E
and H respectively). Let x and y denote the squids
and snapper fish respectively. A flow diagram for
our proposed model is depicted in Figure 1.

From the Figure 1, a nonlinear differential
equation for squids-snapper fish with fishing rates
can be constructed as:

where all symbols in model (2) are described as in
Table 1. Note that this model is in fact the
modification of Lotka-Volterra model in (1). In
model (2), the term rx  represents logistic
growth rate for squids with carrying capacity K,
while the snapper fish growth rate is given by sy

 with the same carrying capacity K. Notice
also that for both squids and snapper fish equations,
we have the same term of . This indicates that
both species are sharing the same carrying capacity
K. Some examples of carrying capacity are water,
nutrient, oxygen and living space. The term αxy
shows the interaction between squids and snapper
fish with snapper fish attack rate α. In this situation,
the squids suffer while the snapper fish gains. We
call E and H as the fishing rates for squids and
snapper fish populations respectively. Here, we
assume that the catching term for squids is Ex3 while
the catching term for snapper fish is Hy2. These mean
that when the fishing activity operates, the number
of squids being caught is greater than the number
of snapper fish. The same approach has been done
by Das et al. (2009) where they use the cubic term
for the prey and quadratic term for the predator,
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except that they consider for the case of toxicity
effect on both prey and predator. In Table 1, the
values of parameters r,s,K,α are assumed while
E and H are computed from the real data obtained
from Malaysia Department of Fisheries in
Terengganu. Note also that we assume both values
of fishing rates on squids and snapper fish are same
since they are caught together by the fishermen. All
parameters in model (2) are assumed to be positive.

MATERIALS AND METHODS

In this section, we discuss two methods that are
used to analyse model (2): stability analysis and
modification of values of fishing rate parameter.

Stability analysis
Here, we discuss a method called the stability

analysis. This analysis is valuable to determine the
stability of equilibrium solutions of the dynamical
systems. In our model, this analysis will be used to
investigate the stability and instability of prey and
predator populations over time. Lynch (2014)
suggests five steps to implement this method.

Step 1: First, we need to solve the simultaneous
equations in (1) by equalling to zero in order to
obtain the equilibrium solutions of prey and
predator.

Step 2: Next, we reduce the nonlinear system in
(1) to linear system by using Jacobian matrix. The
general form for Jacobian matrix is:

Step 3: Now, we substitute the equilibrium solutions
obtained in Step 1 into the Jacobian matrix in Step
2. Note that if we have n equilibrium points, then
we will have n Jacobian matrices.

Step 4: From each Jacobian matrix in Step 3, the
eigenvalues can be obtained by finding the
determinant of |λI–J |=0, where λ represents the
eigenvalue and I is the identity matrix.

Step 5: Finally, the types of stability can be
determined from the signs of the eigenvalues (either
positive or negative). For 1-dimensional system, if
λ is positive, then an equilibrium point is said to be
unstable and if λ is negative, it is said to stable. For
2-dimensional system like (1), the classification of
eigenvalues with the corresponding types of
stability are given as follow:

a) if 0<λ1<λ2, then the equilibrium point is
unstable.

b) if λ1<λ2<0, then the equilibrium point is stable.

c) if λ1<0<λ2, then the equilibrium point is saddle,
which implies unstable.

d) if λ1=λ2>0, then the equilibrium point is
unstable.

e) if λ1=λ2<0, then the equilibrium point is stable.

f) if the eigenvalues are complex with nonzero real
parts, λ1=λ2 = p ± iq with p>0, then the
equilibrium is spiral unstable.

g) if the eigenvalues are complex with nonzero real
parts, λ1=λ2 = p ± iq with p<0, then the
equilibrium is spiral stable.

h) if the eigenvalues are complex with pure
imaginary, λ1=λ2 = ±iq, then the equilibrium is
a center.

Modification of parameter of fishing rates
This method will be adapted by changing the

values of parameter of fishing rates in model (2) and
plot using Maple software.

RESULTS AND DISCUSSION

In this section, we analyse the proposed model in
(2); the equilibria is determined, stability of
equilibria is investigated and the fishing effect on
both squids and snapper fish populations is varied.

Equilibria and stability of equilibria
From Step 1 in previous section, there are four

possible equilibrium solutions for squids and
snapper fish populations over time:

a) Extinction of both populations (x1,y1)=(0,0),

b) Mutual exclusion where only predator survives
(x2,y2)=(0,9),

c) Mutual exclusion where only prey survives
(x3,y3)=(11, 0),

d) Coexistence of both populations (x4,y4)=(10, 9).

Next, from Step 2, the general Jacobian matrix for
model (2) is

From Step 3, we substitute the four equilibria
obtained for model (1) into the above matrix.
Therefore we will have four corresponding Jacobian
matrices:



238 SQUIDS-SNAPPER FISH DYNAMICS MODELWITH FISHING EFFECTS

a) For (x1,y1), the Jacobian matrix is J(x1,y1) =
 ,

b) For (x2,y2), the Jacobian matrix is J(x2,y2) =
 ,

c) For (x3,y3), the Jacobian matrix is J(x3,y3) =
 ,

d) For (x4,y4), the Jacobian matrix is J(x4,y5) =
 ,

Using Step 4, we have the following corresponding
eigenvalues:

a) For (x1,y1), the eigenvalues are λ1 = 6.5 and λ2 =
0.5;

b) For (x2,y2), the eigenvalues are λ1 = 5.861 and
λ2 = -0.49;

c) For (x3,y3), the eigenvalues are λ1 = -13.08 and
λ2 = 0.511;

d) For (x4,y4), the eigenvalues are λ1 = -0.481 and
λ2 = -10.438.

Therefore, the classification of stability for each
equilibrium according to Step 5 are given in
Table 2.

In Table 2, the top three equilibria are unstable
while the last solution is stable. The first solution
(x

1
,y

1
) is unstable, which means that it is impossible

that both populations will be extinct in the future.
The instability of both (x

2
,y

2
) and (x

3
,y

3
) indicate

that mutual exclusions (either only squids survives
or snapper fish survives) will not occur in the future
since they need each other in the marine ecosystem.
Finally, the stability of the last solution (x

4
,y

4
)

shows that the populations of prey and predator will
remain in the future. However, these populations
will decrease and may lead to extinction if and
only if the fishing activity by the human is not
controlled. The time series plot for squids and
snapper fish using the values of parameters in
Table 1 is shown in Figure 2. The solid line
represents the squids’ population size while the
dashed line represents the snapper fish population
size. It is noticeable that both populations are

monotonically increasing and after a certain time,
they stabilize to a constant values of x = 10 and
y = 9, i.e. (x

4
,y

4
) = (10,9).

Effect of fishing rates by changing the parameter
The pattern of squids and snapper fish in Figure

2 is for fixed value of fishing rate, i.e. E = H = 0.05.
With current rate, the populations of squids and
snapper fish is estimated to sustain for the next 50
years. In this section, we show the effect of fishing
rate on squids and snapper fish populations by
varying this rate. This analysis is fundamental to
avoid both populations from extinction especially
for the snapper fish since it is one of the commercial
fish that has high demand in Malaysia especially in
Terengganu. We plot the populations of squids and
snapper fish over time for different values of fishing
rates in Figure 3 and Figure 4 respectively. The
fishing rates for the squids are varied for E = 1,3,7.
When E = 1, the population of squids is estimated
to exist and sustain for the next 50 years. Next,
when the fishing rate is increased to E = 3, the
population will decrease but still exist after 50 years.
However, if E = 7, then the squids’ population is
estimated to be extinct after 50 years. This
extinction occurs since E > r. Note that the value of
squids’ growth rate is r = 6.5 in Table 1. In an effort
to guarantee that squids exist in the ecosystem, the
growth rates of the squids should be greater than the
fishing rates. Therefore, the fishing rates for squids
must be controlled within a range of E = (0,6.5).

Similar analysis is also done for the snapper fish.
We vary the fishing rates for H = 0.1,0.4,2. When
H = 0.1, the population of snapper fish is estimated
to exist and sustain for the next 50 years. As we
increase the fishing rate H = 0.4, eventhough the
population will decrease, it will still exist after 50
years. If high fishing rate is used, for example
H = 2, the snapper fish population is estimated to
be extinct after 50 years. This extinction occurs
since H > s. Note that the value of snapper fish
growth rate is s = 0.5 in Table 1. In an effort to
guarantee that the snapper fish exist in the
ecosystem, the growth rates of the fish should be
greater than the fishing rates. The range of fishing
activity for snapper fish must be H = (0,0.5).

Table 2. Summary of equilibria solutions for squids and snapper fish
populations with their corresponding types of stability for model (2)

Equilibrium solution for squids
Types of stability

and snapper fish population

(x1, y1) = (0, 0) unstable
(x2, y2) = (0, 9) saddle, which imply unstable
(x3, y3) = (11, 0) saddle, which imply unstable
(x4, y4) = (10, 9) stable
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In fact, the results above agree with a study by
Kar and Cakraborty (2010) where they consider a
prey-predator fishery model with fishing activities
on the prey only. By increasing the harvesting
rate on both prey and predator, both populations
show changes from stable to unstable. Moreover, this
fishing effort has also been investigated by Sahoo
et al. (2016) where a bifurcation study is done by
varying the fishing effort in a harvested-predator-
prey model. A more recent study by Keong et al.
(2018) shows that fishing activities give more
significant impact compared to the presence of toxic
substance in a prey-predator fishery model.

CONCLUSION

In this paper, a squids-snapper fish model has
been developed which include both life-history
characteristics and management criteria as para-
meters in the model. We found that this model has
four equilibria for which all equilibria are unstable
except for the coexistence equilibrium. This
indicates that both species will remain in the future.
Furthermore, by varying the fishing rates parameters,
we obtained that both population would still exist
in the future as long as the fishing rates can be
controlled to be lower than the growth rates for both

Fig. 3. The dynamics of squids population over time in year for various values of
fishing rate E. The solid line shows for E = 7, the dotted line shows for E = 3 and
the dashed line shows for E = 1.

Fig. 2. Time series plot for squids and snapper fish where in the future (after
50 years), the populations will stabilize to (x4, y4) = (10, 9) with initial population
(x0, y0) = (3, 1) for the same fishing rate E = H = 0.05.
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populations, i.e. the fishing activity for both squids
and snapper fish must be within the ranges of E =
(0,6.5) and H = (0,0.5) respectively. This proposed
model and the obtaining results are applicable in
the field of conservation on biology as well as in
food security especially in Terengganu region. Our
future work on the proposed model will look on the
bifurcation analysis where we can determine at
which value of parameter will it give the changes
of stability of equilibrium point where we call this
value as bifurcation point.
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