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ABSTRACT

Various varieties have been developed in Malaysia, mainly to improve rice response to environmental changes, pests, 
and diseases, as well as to increase rice productivity under stressful conditions. Despite being semi-aquatic plants, 
rice is intolerant to complete submergence for a long period. This study was conducted to evaluate the response 
of seven Malaysian rice varieties at the vegetative stage under submergence stress. Two-week-old rice seedlings 
were submerged for 14 days, and the changes in plant height, chlorophyll content, and soluble sugar content were 
determined. The survival percentage of these varieties was observed after 14 days of de-submergence, where 
UKMRC2 and MR220CL possessed high survivability (90% & 60%, respectively). After submergence, all varieties 
showed height increment and reduced chlorophyll and soluble sugar contents. Based on our analyses, UKMRC2 
performed better than other varieties, although slightly less than IR64-Sub1. It was confirmed that UKMRC2 is 
the submergence-tolerant variety, and its response to underwater germination was also determined. Our result 
showed that UKMRC2 might possess tolerance to anaerobic germination conditions, and more studies are needed 
to understand its molecular mechanism for submergence. In conclusion, many varieties used were susceptible to 
submergence, and the development of more submergence-tolerant varieties is crucial for Malaysia’s food security 
sustainability.
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INTRODUCTION
Unpredictable changes in temperature, rainfall, and weather 
patterns are the environmental factors that influence the 
growth, productivity, and survival of crop plants. Flooding 
is one of the abiotic stresses that negatively affect rice 
production worldwide, especially in Southeast Asia, and 
has become a devastating issue for farmers. In Malaysia, 
flooding destroyed about 1,500 hectares of rice planting 
area, especially in Kedah, Kelantan, and Pahang (DOA, 
2015), and caused a huge impact on national rice production 
and the socio-economic status of local farmers. 

Rice is a semi-aquatic plant, which can be partially or 
completely submerged during flooding. The response of rice 
to flooding or submergence depends on the rice genotypes, 
the intensity, and duration of rainfall, and the characteristics 
of floodwater and topography (Ito et al., 1999; Meng et al., 
2022). The increase in water level during flooding disrupts 
oxygen (O2) and carbon dioxide (CO2) diffusions into rice 
plants, interferes with the electron flow during photosynthesis 
and respiration, increases the energy consumption, and 
limits the production of sugar for the plant’s growth (Jackson 
& Ismail, 2015). Under prolonged submergence, plants may 
suffer nutrient deficiency and energy starvation, leading to 
fatality (Ito et al., 1999; Tamang & Fukao, 2015). 

Despite the negative impact of flooding, certain rice 
genotypes may thrive under submergence conditions by 
adapting several strategies to avoid or escape from this type 
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of stress (Afrin et al., 2018). Several anatomical 
and morphological features are beneficial for 
rice adaptations to submergence, such as the 
formation of aerenchyma tissues, leaf gas film, 
and adventitious roots, which can facilitate the 
translocation of oxygen to submerged rice tissues 
(Ito et al., 1999; Kuroha & Ashikari, 2020; Panda 
& Barik, 2021). During the germination stage, 
anaerobic germination (AG) under submergence 
causes rapid coleoptile elongation and delayed 
radicle development in the submergence-tolerant 
rice, as starch reserves are utilized through higher 
amylase activity and anaerobic respiration (Ismail 
et al., 2009). At the vegetative stage, the growth 
of seedlings can be either suppressed until the 
level of water is reduced (quiescence strategy) 
or the leaf internode is rapidly elongated to reach 
out to the water surface (escape strategy) (Hattori 
et al., 2009; Bailey-Serres et al., 2010; Kuroha & 
Ashikari, 2020).  

The quiescence strategy is adopted by 
submergence-tolerant rice, where shoot elongation 
is restrained to reduce carbohydrate consumption 
during submergence, and energy is conserved 
to recommence plant growth and development 
after the submergence condition ends (Das et al., 
2005; Tamang & Fukao, 2015). This adaptation 
is mediated by SUBMERGENCE 1A (SUB1A), a 
protein that belongs to the ETHYLENE RESPONSE 
FACTOR (ERF) superfamily (Xu et al., 2006). 
SUB1A influences carbohydrate metabolism, low 
energy sensing pathways, and sugar homeostasis 
under submergence stress, as well as maintaining 
photosynthetic capacity and promoting plant 
recovery post-submergence (Locke et al., 2018; 
Perata, 2018). Rapid internode elongation is 
the escape strategy adapted by deepwater rice 
exposed to a long period of flooding (Nishiuchi 
et al., 2012). SNORKEL1 (SK1) and SK2 are the 
members of the ERF family (Hattori et al., 2009) 
that induce the activation of ethylene biosynthesis, 
which further increases the accumulation of 
gibberellic acid (GA) and represses abscisic acid 
(ABA) production (Kende et al., 1998; Hattori et 
al., 2011).

Many varieties have been developed in 
Malaysia to obtain high-yielding rice and be tolerant 
to environmental stresses. MR219, MR284, and 
MR297 are high-yield varieties that are resistant 
to rice blast disease (MADA, 2017), whereas 
UKMPL-5 and UKMRC8 are tolerant to drought 
and submergence, respectively (Shamsuddin 
et al., 2016; Ikmal et al., 2019). Depending on 
the granary area, several varieties are preferred 
by farmers for their short maturity and tolerance 
to disease and pests. For example, MR303 and 
MR220CL varieties were planted in Bachok, 
Kelantan (KADA, 2021) because of their high 
yield, resilience  to the unfavorable environment, 

and tolerance to herbicides (Sunian et al., 2019). 
However, the responses of these varieties to 
submergence have yet to be determined. Bachok 
is one of the regions that was affected by floods 
during the monsoon (Razali, 2019). Thus, the 
planting of submergence-tolerant rice among local 
farmers is highly needed.

To date, except for MR303 and MR220CL, the 
response of several local varieties to submergence 
stress has been evaluated, and most of these 
varieties are susceptible to flooding (Ikmal et al., 
2019; Sazali et al., 2021). The present study was 
conducted to evaluate the morpho-physiological 
changes of MR303 and MR220CL as well as other 
varieties under submergence at the vegetative 
stage. In addition, the anaerobic germination (AG) 
response of the submergence-tolerant variety, 
UKMRC2, was also carried out to investigate its 
tolerance level during underwater germination.

MATERIALS AND METHODS
Plant materials and growth condition
Seeds of rice varieties MR219, MR284, MR297, 
MR303, and MR220CL were obtained from the 
Kemubu Agricultural Development Authority 
(KADA), whereas seeds of UKMRC2, UKMPL-5, 
and IR64-Sub1 were provided by the Universiti 
Kebangsaan Malaysia (UKM). The IR64-Sub1 was 
used as a check variety tolerant to submergence 
stress following a previous study by Septiningsih 
et al. (2009), whereas MR219 was a control for 
submergence-susceptible variety (Ahmed et al., 
2016; Ikmal et al., 2019; Ahmad et al., 2020). 

The varieties used in this study were arranged 
in a randomized complete block design with three 
replications. The experiments were conducted at 
the Plant Biotechnology Center and Terrace Q, 
Rumah Tumbuhan, UKM Bangi, Selangor. Plants 
were grown in a greenhouse with maximum and 
minimum temperatures of between 25 °C to 35 °C, 
respectively. The relative humidity was about 85% 
throughout the experiment.

Submergence treatment on rice seedlings
All seeds were soaked in a flask containing distilled 
water (in darkness at 25 °C) for two days’ duration. 
Those seeds were then sowed on a tray containing 
mixed soils (topsoil: organic matter: sand with a 
ratio of 3:2:1) under glasshouse conditions for 
14 days duration. Next, 30 seedlings with similar 
heights for each variety were kept on in the tray, 
and placed in a water tank with a dimension of 
1.10 m × 1.10 m × 1.10 m filled with a 1-meter 
depth water level for 14 consecutive days. Then, 
all seedlings were taken out from the tank and 
placed under greenhouse conditions to allow for 
recovery after submergence. During the recovery 
phase, plants were watered until they reached 
maturity. 
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Plant height and survival percentage 
The plant height was measured before (T0) and 
after 14 days (T14) of submergence. The height 
was measured from the stem base to the tip of 
the leaf. The leaves were drooping due to the 
submergence treatment; therefore, the height 
was measured one day after (on the 15th day) the 
plants were taken out of the tank. 

Five seeds with four replications were used to 
determine the survival percentage. The formation 
of the new green shoot was used to indicate the 
recovery of the rice. The survival percentage of 
each variety was determined after 14 days of de-
submergence according to the equation below. 

Chlorophyll content analysis
The chlorophyll content before and after 
submergence was determined using methods 
by Arnon (1949). About 100 mg of the leaf was 
grounded with 80% acetone using a pestle and 
mortar. The homogenate was then centrifuged at 
5,000 ×g for 10 min at 4 °C and the supernatant 
was transferred into a new tube. The supernatant 
was measured using a spectrophotometer at 
the absorbance wavelength of 645 nm (A645) for 
chlorophyll a and 663 nm (A663) for chlorophyll 
b. The total chlorophyll content was determined 
using the formula:

Soluble sugar content analysis
The soluble sugar content before and after 
submergence treatment of each variety was 
determined following methods by Yoshida et al. 
(1976), The leaf was pat-dried, and about 100 
mg of the sample was grounded in liquid nitrogen 
using a mortar and pestle. The fine powder was 
transferred into a new tube containing 80% ethanol 
and subjected to incubation at an 80 °C water bath 
for 30 min. Then, the sample was centrifuged at 
8,000 ×g for 3 min at 4 °C, and the supernatant 
was transferred into a new tube. Next, 95% 
ethanol (v/v) was added into the tube and placed 
in the water bath set at 80 °C for 5 min. The sugar 
extract was then transferred into a conical flask 
before being added to distilled water. About 5 mL 
of diluted sugar extract was transferred into a test 
tube and placed on ice before the addition of the 
anthrone reagent. The mixture was added slowly 
using a glass rod and boiled in the water bath for 
8 min before letting it cool on ice. The absorbance 
of the sample at the wavelength of 630 nm was 
determined using the spectrophotometer, and 
D-glucose solutions were used as standards.

In all parameters measured under 
submergence treatment, at least three individual 
plants were used. The percentage of changes was 
calculated based on the following equation:

Underwater germination 
Three varieties, namely MR219, UKMRC2, and 
IR64-Sub1, were chosen for the underwater 
germination test. These varieties were selected 
based on their response to submergence at the 
vegetative stage in this current study. MR219 
and IR64-Sub1 were the controls for susceptible 
and tolerant varieties, respectively. Five seeds of 
each variety, in duplicates, were soaked in distilled 
water for 48 h in the dark. Then, the control seeds 
were sowed on moist filter paper and allowed for 
germination in the air. The filter paper was wetted 
with distilled water every day to avoid it drying out. 
For underwater germination, seeds were placed in 
a container filled with 5 cm of distilled water and 
sealed with a lid. Seeds were germinated at 25 
°C under 16 h of light and 8 h of darkness. The 
coleoptile length for control and submergence 
treatments was measured with a ruler after 7 days.

Statistical analysis
All data obtained were subjected to a two-way 
analysis of variance (ANOVA), and Tukey’s test was 
used to analyze the differences among varieties 
using Minitab v21.1. Correlation analysis between 
parameters measured under submergence 
treatment was conducted using GraphPad Prism 
v9.

RESULTS AND DISCUSSION
Survival percentage of rice under 
submergence 
Submergence treatment was imposed on rice 
varieties for 14 days, and their survival was 
determined after 14 days of de-submergence. 
The check variety, IR64-Sub1, recorded a 100% 
survival percentage (Figure 1). Among other 
varieties, UKMRC2 recorded the highest survival 
percentage at 90%, followed by MR220CL (60%), 
while the lowest was recorded in MR297 and 
UKMPL-5 at 10%, respectively. This result suggests 
that UKMRC2 was highly tolerant to submergence, 
whereas MR220CL might be partially tolerant to 
submergence. Our result was corroborated by 
Ikmal et al. (2019), which reported that the survival 
percentage of UKMRC2 under submergence 
stress was 67.2%. The UKMRC2 was produced by 
a cross between MR219 and Oryza rufipogon Griff. 
(IRGC105491) (Wickneswari & Bhuiyan, 2014), 
does not have the Sub1 QTL (Ikmal et al., 2019), 
thus suggesting that other genes may contribute 
to UKMRC2’s tolerance to submergence. On 
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the other hand, Sazali et al. (2021) reported 
that MR284 and MR297 recorded low survival 
percentages under saline submergence, which 
indicated that these varieties were susceptible to 
submergence conditions. 

Morpho-physiological changes of rice 
varieties under submergence treatment
Plant height
In general, all rice varieties showed an increment 
in plant height after submergence (Table 1). The 
highest plant height increment was observed in 
MR303, whereas IR64-Sub1 was the shortest 
plant after the submergence treatment ended. 
Among these varieties, MR303 showed the 
highest elongation change percentage at 54.9%, 
followed by MR220CL (27.8%), whereas the 
lowest increment in plant height was in IR64-Sub1 
(11.2%), followed by UKMRC2 (16.8%) (Table 1). 
This result suggests that the leaf elongation of 
MR303 was greatly influenced by submergence.

The rice leaf is elongated during submergence, 
mainly to allow gaseous exchange above the 
water surface and to ensure the plant can resume 
respiration and photosynthesis activities (Hattori 
et al., 2009; Bailey-Serres et al., 2012; Kuroha & 
Ashikari, 2020). This adaptation gives an advantage 
to the plant to escape from the excessive water 
level and continue to grow. However, cell division 
and elongation during the extension of the leaf 
under submergence require energy consumption 

and carbohydrate depletion, which could cause 
death if the energy is fully-utilized before the leaf 
reaches the water surface (Ito et al., 1999; Bailey-
Serres et al., 2010; Sone et al., 2012). This may 
explain the low survival percentage (15%) of 
MR303 under submergence although it possessed 
the highest elongation percentage (Table 1).

Changes in plant height were less than 20% 
for IR64-Sub1, UKMRC2, and MR284, suggesting 
that energy is conserved in these varieties 
under submergence. IR64-Sub1 is one of the 
submergence-tolerant mega varieties (Bailey-
Serres et al., 2010), and the presence of the 
Sub1 QTLs is known to enhance tolerance by 
regulating sugar metabolism (Fukao et al., 2006; 
Locke et al., 2018). This quiescence strategy 
may also be adopted by UKMRC2 in response to 
submergence, although Sub1 QTLs were absent, 
as a strategy to avoid exhaustion of energy from 
internode elongation (Ikmal et al., 2019).

Chlorophyll content
Overall, the chlorophyll content of all varieties was 
significantly reduced after submergence treatment. 
The highest chlorophyll content was observed in 
IR64-Sub1, while the lowest was in MR219 (Table 
1). In addition, the lowest chlorophyll reduction 
was observed in IR64-Sub1 (69.9%), followed 
by UKMRC2 (83.2%) and MR284 (87.2%). Other 
varieties showed high chlorophyll reduction of 
more than 90%, with the highest being in MR219 
(95.1%).
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Fig. 1. The survival percentage of rice varieties after 14 days of de-submergence. Means with different letters are 
significantly different at p<0.05.
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Chlorophyll is a green pigment that is essential 
in perceiving light for photosynthetic activities. 
Chlorophyll content in plants is greatly influenced 
by environmental factors such as soil nutrients, 
temperature, light intensity, and water availability 
(Du et al., 2017; Naznin et al., 2019; Ajeng et al., 
2020; Damm et al., 2022), which indirectly affect 
plant growth and productivity. The reduction of 
chlorophyll content due to abiotic stresses could 
be associated with chloroplast degradation 
through autophagy or chloroplast vesiculation 
(Jiang et al., 2020) and enhanced chlorophyllase 
activities that promote the degradation of 
chlorophyll (Sakuraba et al., 2014; Sharma et 
al., 2020). The reduced chlorophyll content is 
expected in rice that was completely submerged 
due to chlorophyll breakdown and photodamage in 
leaves, which are mediated by ethylene production 
(Jackson et al., 1987; Sone & Sakagami, 2017). 
Consequently, chlorosis in submerged leaves 
inhibits photosynthesis and could lead to plant cell 
death.

Several rice varieties that have been 
introgressed with SUB1 showed increased 
tolerance to submergence compared to the non-
introgressed SUB1 rice as they maintained higher 
chlorophyll content during submergence (Sarkar & 
Bhattacharjee, 2011; Singh et al., 2014; Bui et al., 
2019). Retention of chlorophyll content is important 
in ensuring rice survival and recovery after the 
submergence period ends (Singh et al., 2014). 
In this study, UKMRC2 showed less chlorophyll 
content reduction than other varieties except for 
the check variety IR64-Sub1, suggesting that the 
remaining chlorophyll may facilitate the survival of 
UKMRC2 during submergence.

Soluble sugar content
Similarly, submergence resulted in a significant 
reduction of sugar in all varieties (Table 1). The 
lowest change in sugar content was in MR303 
(60.3%), followed by IR64-Sub1 (70.2%) and 
both MR297 and UKMPL-5 (79.5%). More than 
80% sugar content reduction can be seen in 
other varieties, with the highest reduction being in 
MR220CL (87.1%) (Table 1).

Submergence-tolerant rice retains the level of 
non-structural carbohydrates (NSCs: soluble sugar 
and starch) because it is essential in enhancing 
the submergence tolerance of rice plants, 
particularly by maintaining growth parameters 
(Sarkar, 1997), shoot elongation ability (Sarkar 
et al., 1996; Das et al., 2005), and sustaining 
sucrose metabolism (Panda & Sarkar, 2014). 
Higher carbohydrate content after submergence is 
often associated with rice survival, where new leaf 
regeneration is required for further photosynthetic 
activities and re-activation of plant growth (Sarkar 
& Battacharjee, 2011). Energy conservation will Ta
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encourage recovery and improve chances of 
survival after de-submergence, in contrast to the 
escape strategy, which uses more energy during 
internode elongation (Bui et al., 2019).

Soluble sugars such as glucose, fructose, and 
maltose are needed to regulate various metabolic 
processes in plants. Soluble sugars can detect 
environmental changes and function as signals in 
sugar signaling pathways in response to abiotic 
stress (Rosa et al., 2009). During submergence, 
increases in soluble sugars could improve cells’ 
osmotic potential to protect the cell from oxidative 
damage (Lv et al., 2016). Soluble sugars are 
consumed for leaf elongation and are associated 
with the survivability of rice after de-submergence 
(Sayani et al., 2017). In susceptible varieties, 
soluble sugars would normally be used up as a 
strategy to escape from submergence, but the plant 
cannot survive afterward. Meanwhile, tolerance 
varieties could have either a low amount of soluble 
sugars with restricted leaf growth or high soluble 
sugars, promoting leaf elongation and surviving 
from submergence (Samanta et al., 2021). 	

In this study, MR303 contained the highest 
soluble sugar content and the longest plant, but 
the survival percentage accounted for 15% only. 
These results suggest that MR303 used up the 
soluble sugars for its leaf elongation but mostly 
would not survive submergence. In contrast to 
IR64-Sub1, high soluble sugars might not be fully 
utilized for leaf elongation and were conserved for 
post-submergence growth.

Correlation analysis
Among the parameters examined in this study, 
chlorophyll content after submergence (CCA) 
showed a positive correlation with survival 
percentage (r=0.70, p<0.05), whereas plant 
height after submergence (PHA) was negatively 
correlated with survival percentage (r=-0.64, 
p<0.05). Meanwhile, chlorophyll content before 
submergence (CCB) was positively correlated 
(r=0.71, p<0.05) with plant height after 
submergence (PHA) (Figure 2). These results 
suggest that chlorophyll content is associated with 
leaf growth and the survival of seedlings under 
submergence conditions. 

Chlorophyll is a crucial pigment for 
photosynthesis, which could affect the growth of 
leaves during submergence stress. In addition, 
the amount of chlorophyll may facilitate certain 
genotypes’ survival during submergence. The 
ability to adapt to aerobic conditions after de-
submergence is probably due to the high 
chlorophyll content in the leaves that emerged 
during submergence through a decreased amount 
of carbohydrate breakdown (Sone et al., 2012). 
Meanwhile, a negative correlation between plant 
height and survival has already been established 

in submergence-susceptible varieties, since 
it is known that energy deprivation during leaf 
elongation could lead to plant death (Bailey-Serres 
et al., 2010; Sone et al., 2012).

Anaerobic germination of UKMRC2
MR219, UKMRC2, and IR64-Sub1 were selected 
for underwater germination tests based on their 
survival percentage during submergence stress. 
Our results showed that all varieties were fully 
germinated within 7 days of submergence. The 
coleoptile of IR64-Sub1 was significantly reduced 
under submergence, but the coleoptiles of MR219 
and UKMRC2 were elongated more than 5 cm 
during submergence (Figure 3). These results 
suggested that anaerobic germination caused 
faster coleoptile elongation in both MR219 and 
UKMRC2 as compared to IR64-Sub1.

In general, tolerant rice genotypes can 
germinate and elongate their coleoptile underwater 
since the carbohydrate reserves in the endosperm 
are utilized for the establishment of seedling 
growth (Lee et al., 2014). Rice genotypes that 
are tolerant to anoxic (without oxygen) or hypoxic 
(limited oxygen) conditions showed higher rates 
of coleoptile elongation, alcoholic fermentation, 
and glycolysis-related enzyme activities than the 
intolerant variety (Gibbs et al., 2000; Lee et al., 
2009). Based on our results, UKMRC2 may be able 
to tolerate anaerobic germination by extending its 
coleoptile length underwater, but more analyses 
are required to confirm this finding. 

CONCLUSION 
In conclusion, our study indicated that most local 
rice varieties were susceptible to submergence 
stress, except for UKMRC2. Hence, more efforts 
are needed to produce submergence-tolerant rice 
for local consumption. In addition, further study 
on the molecular mechanism of UKMRC2 via 
genetics and molecular approaches is needed to 
identify genes or QTL associated with the tolerant 
ability to submerge stress before utilization as a 
parent in a breeding program.
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