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ABSTRACT 

MicroRNA (miRNA) has emerged as a promising biomarker for improving the current state of an early lung 
cancer diagnosis. Multiple studies have reported that circulating miRNAs are usually combined in a single panel 
to determine lung cancer risk. In this study, we sought to assess the prognostic predictive values of the potential 
miRNAs for lung cancer survival among Malaysian patients. The microarray analysis was performed on the 
isolated miRNA samples of formalin-fixed lung cancer tissues from Malaysian populations. The correlation 
between miRNA expression and lung adenocarcinoma (LUAD) patient survival was predicted using TGGA 
data, followed by extensive in silico analyses, including miRNA target gene identification, protein-protein 
interaction (PPI) network construction, subnetwork (SN) detection, functional enrichment analysis, gene-
disease associations, and survival analysis in advanced-stage LUAD. Overall, two promising miR-99a-5p and 
miR-148a-3p were upregulated in the patients with good survival. We found that 64 miR-99a-5p and 95 miR-
148a-3p target genes were associated with poor prognosis and highly participated in cancer-associated 
processes, such as apoptosis, mRNA transport and cell-cell adhesion. The density score of 4.667, 3.333, and 
3.000 in respective SN1, SN2, and SN3 showed the significant subnetworks of constructed PPI leading to the 
identification of 17 targets, of which ~79% of them involved in neoplastic diseases. Four high-confidence target 
genes (SUDS3, TOMM22, KPNA4, and HMGB1) were associated with worse overall survival in LUAD patients, 
implying their critical roles in LUAD pathogenesis. These findings shed additional light on the roles of miR-99a-
5p and miR-148a-3p as potential biomarkers for LUAD survival. 
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INTRODUCTION 
Lung cancer is among the most diagnosed cancer-related 
diseases that cause the highest incidence and mortality rates 
worldwide (Siegel et al., 2021). Non-small cell lung cancer 
(NSCLC) makes up 80 – 85% of lung cancer cases (Siegel et al., 
2021). It begins in mucus-producing gland cells in the airway 
lining and progresses into adenocarcinoma (Travis et al., 2015). 
In Malaysia, lung cancer was one of the ten most common 
cancers accounting for 11,256 (9.8%) cases from 2012 to 2016 
(Ab Manan et al., 2019). Based on ethnicity, the frequency of lung 
cancer is high in Chinese (16.0%), followed by Malay (12.5%) and 
Indian (5.7%) (Ab Manan et al., 2019). In 2018, 4,686 (10.7%) 
new cases of lung cancer in both sexes within all ages were 
reported in the GLOBOCAN database, with an estimated total 
death of 4,057 (14.4%) (Ferlay et al., 2019).  

The high mortality rate among lung cancer patients is 
due to an ineffective screening strategy, poor five-year prognosis, 
and high recurrences (Lu et al., 2006). Therefore, it is critical to 
determine the molecular signatures for effective screening 
strategy, prediction of recurrent disease and enhanced prognosis 
in lung cancer patients (Liu et al., 2020). To date, various 
treatments are being used to slow cancer cell progression and 
increase overall patient survival, including chemotherapy, 
radiotherapy, targeted therapy, and surgical and traditional 
methods (Kan & Chan, 2016). However, many challenges occur 
during the treatment process, including the lack of specialists, 
especially thoracic surgeons, clinical and radiation oncologists, 
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insufficient data in the national cancer registry, expensive treatment costs that specifically involve molecular 
testing and most importantly, lack of awareness among Malaysians to do screening test especially when they 
already in the late stage III and IV (Rajadurai et al., 2019).  

The miRNAs have been reported to regulate numerous biological processes related to cancer, 
including apoptosis, proliferation, stress response, survival, and metastasis (Garofalo & Croce, 2011). Loss 
and gain of miRNA function may contribute to cancer progression through upregulation and silencing of target 
mRNAs (Iorio & Croce, 2009). The changes in target mRNA cause genetic changes that lead to the initiation 
of cancer activities, such as inhibition of growth signals, evading programmed cell death pathways and tumour 
growth (MacFarlane & Murphy, 2010). In the past few years, several studies have identified the role of miRNA 
in predicting a good prognosis for lung cancer. Yang et al., (2018) reported that miRNA-183 suppresses 
tumours in NSCLC by down-regulating the oncogene Metastasis Associated 1 (MTA1). Confirmation of 
reduced cell migration and invasion abilities in the miR-183 mimic and increased abilities in the miR-183 
inhibitor group was achieved through luciferase reporter gene assay. Another miRNA study found that 
microRNA-148b regulates tumour cell inhibition by blocking the pathways of the Mitogen-activated protein 
kinase (MAPK) or c-Jun NH2-terminal Kinase (JNK) (Lu et al., 2019). Although NSCLC research is expanding 
yearly, the knowledge of the progression and therapy of the tumour in most cancers, including LUAD, is still 
not fully understood, and most published miRNA biomarkers are detected in the Caucasian population. 
Therefore, the characterisation of miRNA in our lung cancer patients is crucial as they may serve as molecular 
biomarkers to predict the future survival of the Malaysian population. 

In this present study, the miRNA expression profiles of the formalin-fixed paraffin-embedded (FFPE) 
lung cancer tissues were obtained from UKM Medical Centre (UKMMC), comprising samples from patients 
who had either (i) good (n=13) or (ii) poor survival (n=9). The screening was conducted to identify significantly 
upregulated miRNAs at least 2-fold and P < 0.05 in the patients with good survival. Survival analysis was 
performed to determine our patient's associated miRNAs with good survival concordance with the TCGA LUAD 
patient cohort. Then, miRNA-mRNA data and filtering were employed to obtain the target genes of miRNA 
owing to developing a PPI network for survival-related genes and clustering them into a functionally associated 
subnetwork. GO and pathway enrichment was conducted on miRNA target genes to discover associated 
biological activities of genes in LUAD development. Furthermore, survival analysis of miRNA putative targets 
was performed to validate their lung cancer survival rate. Altogether, we used the abovementioned analyses 
to discover candidate miRNA as molecular biomarkers for LUAD patient survival that were previously 
unreported. 

 
MATERIALS AND METHODS 
Samples collection 

This retrospective study used the formalin-fixed paraffin-embedded (FFPE) lung cancer tissues from 
the Department of Pathology, UKM Medical Centre (UKMMC). The ethical approval for this study was obtained 
from the Universiti Kebangsaan Malaysia Medical Research Ethics Committee (UKM1.5.3.5/244/UMBI-002-
2012). These FFPE lung cancer tissues were collected and archived from patients who underwent treatments 
at the UKMMC between 2003-2013. The FFPE blocks were processed, stained with haematoxylin and eosin, 
and examined by pathologists to determine the cancer cells' representation. Only tissues representing 80% of 
cancerous cells were selected for downstream analysis. The patients’ demographic and survival data were 
collected from the Malaysia Department of Registration database. The patients were stratified into good and 
poor survival groups; patients who were still alive 1-year post-diagnosis were classified as having good survival. 
 
miRNAs extraction from FFPE lung cancer tissues 

miRNAs were extracted from the FFPE lung cancer tissues using the High Pure miRNA Isolation kit 
(Roche, Germany) according to the manufacturer’s protocol. The yield and quality of the extracted miRNAs 
were determined using the Bioanalyzer Small RNA kit (Agilent Technologies, USA). 
 
miRNAs expression profiling 

cDNAs were synthesised from the extracted miRNAs using the cDNA Universal Synthesis Kit II 
(Qiagen). In total, 10ng of miRNA starting material was converted into cDNA following the manufacturer’s 
recommendation. The miRNA expression level in these archived lung cancer tissues was profiled using the 
miRCURY LNATM Universal RT microRNA Ready-to-Use PCR, Cancer Focus Panel (Qiagen) according to 
the manufacturer’s protocol. The miRNA expression quantitative real-time PCR (qPCR) data were analysed 
using the ExiqonGenEx Software version 2.5 (Qiagen, Germany). 
 
miRNAs expression and patient’s survival status correlation analysis  

The OncoLnc webtool (http://www.oncolnc.org) (Anaya, 2016) was utilised to determine the 
correlation between miRNAs expression level and lung adenocarcinoma (LUAD) patients’ survival status. 
OncoLnc is a publicly available webtool that curates and allows the correlation analysis between TCGA 
patients’ survival status and the expression level of mRNAs, miRNAs or lncRNAs to be conducted and 
visualised. Specifically, the OncoLnc webtool was employed to check the TCGA LUAD patient’s survival status 
who had either high or low expression of miR-146a-5p, miR-99a-5p, miR-126-3p, miR-125b-5p and miR-148a-
3p. 
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In-silico prediction of high-confidence miRNAs target genes 
The miRWalk webtool (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/) (Dweep et al., 2014) 

was first employed to identify the putative genes that are targeted by these identified miRNAs. The miRWalk 
webtool utilises eight different miRNAs prediction algorithms and databases: the Diana-microT, miRanda, 
miRDB, PICTAR, PITA, RNA22, RNA hybrid and Target Scan. GEPIA2 webtool (http://gepia2.cancer-pku.cn/) 
(Tang et al., 2019) was utilised to narrow the list of putative target genes. In brief, the significantly associated 
putative target genes with low survival status in the TCGA LUAD patient cohort were selected for further 
analysis (Tomczak et al., 2015). Next, to obtain the high-confidence putative target genes, we overlapped the 
genes identified from the GEPIA2 analysis with miRTarBase. This miRNA prediction webtool curates the 
functionally validated miRNA-target gene interactions (MTIs). The list of genes identified from the miRWalk-
GEPIA2 and miRTarBase analysis were overlapped using the Venn diagram webtool, VENNY2.1 
(https://bioinfogp.cnb.csic.es/tools/venny/). The survival analysis of high-confidence miRNAs target genes was 
performed using Kaplan-Meier Plotter. The survival results by Kaplan-Meier curves, along with 95% confidence 
intervals (Cis) of hazard ratios (HRs) and log-rank test < 0.05, were considered statistically significant. 
 
Functional enrichment analysis of gene ontology (GO) and cancer-related pathway 

The analysis of GO and the related pathway was conducted using publicly available resources from 
Gene Ontology (http://geneontology.org/) (Gene Ontology Consortium, 2015) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG; https://www.genome.jp/kegg/pathway.html) (Kanehisa et al., 2016) to decipher 
the biological significance of the miRWalk-GEPIA2 target genes. To functionally enrich the GO biological 
process and pathways of miRNA target genes, we used the Database for Annotation, Visualization, and 
Integrated Discovery tool (DAVID v6.8; https://david.ncifcrf.gov/home.jsp) (Huang et al., 2007). Parameters for 
functional enrichment analysis were as follows: Fisher Exact P-value < 0.05, Min. Count ≥ 2 and FDR ≤ 1. 
 
Protein-protein interaction (PPI) analysis and subnetwork detection 

A PPI network of miRWalk-GEPIA2 target genes was constructed by retrieving PPI information from 
the Search Tool for the Retrieval of Interacting Genes database (STRING v11.5; https://string-db.org/) 
(Szklarczyk et al., 2019). The PPI information was extracted using StringApp, a data import plugin installed in 
Cytoscape v3.7 software, to decipher the interaction among the potential miRNAs target gene at the protein 
level (Doncheva et al., 2019; Shannon et al., 2003). To discard the inconsistent interactions from the 
constructed PPI, we applied a confidence (score) cutoff of ≥ 0.4. Further, the PPI evidence of target genes 
encoding proteins by STRING was derived from physical and functional associations interactions. To scrutinise 
the highly connected regions (also known as subnetworks or clusters) in the PPI network, we applied the 
Molecular Complex Detection (MCODE v2.0) algorithm (Bader & Hogue, 2003). The density (D) of the PPI 
subnetwork was exploited based on |E|max = |V|(|V| − 1)/2, where |E|max represents the maximum number of 
subnetwork edges and |V| denotes the number of nodes. Meanwhile, the score of the subnetwork, S, is ranked 
according to S = D x |V|. The default parameters used to generate the subnetworks are as follows: Degree 
Cutoff = 2, Node Score Cutoff = 0.2, Kappa-score (K-core) = 2 and Maximum Depth = 100 (Bader & Hogue, 
2003). We then used Cytoscape v3.7 to visualise the constructed PPI network and subnetworks (Shannon et 
al., 2003). Therefore, the distributions of node degrees were calculated using NetworkAnalyzer to detect high-
degree nodes in the subnetwork (Assenov et al., 2008). For subnetwork-based gene-disease association, all 
curated biomarker associations between target genes and associated diseases were retrieved from DisGeNET 
(https://www.disgenet.org) (Piñero et al., 2019) using the DisGeNET Cytoscape plugin (Piñero et al., 2021). 
 
RESULTS 
Patients’ demographic and clinical data 

In total, we performed miRNA expression profiling in twenty-two lung cancer FFPE tissues collected 
from patients who had undergone treatment at the UKMMC between 2003-2013. Of these twenty-two lung 
cancer patients, thirteen were male (59.1%), while nine were female (40.9%). The patients’ mean age was 
67.59 + 10.42 years old. In terms of ethnic groups, twelve patients were Chinese (54.5%), nine were Malay 
(40.9%), and one was Indian (4.6%). All the profiled lung cancer samples were the non-small cells subtype 
(NSCLC). On top of this, most of the analysed samples were advanced-stage lung cancer; stage 3B (n=13), 
4A (n=3) and 4B (n=5). The patients’ demographic and clinical data are summarised in Table 1.  
 
miRNAs profiling in good and poor survival patient groups  

The lung cancer FFPE tissues analysed in this study were stratified into two groups; samples collected 
from patients with either (i) good or (ii) poor survival. Patients who survived at least 1-year post-diagnosis were 
classified as having good survival. Next, we were prompted to profile and compare the miRNAs expression 
landscape between these good and poor survival patient groups. The aim was to identify the miRNAs that 
could be developed and utilised as novel and robust lung cancer prognostic markers. To achieve this objective, 
the cDNA-converted miRNAs were subjected to qPCR-mediated miRNAs expression profiling using the 
miRCURY LNATM Universal RT miRNAs Ready-to-Use PCR Cancer Focus Panel. This cancer focus panel 
contained primer pairs for miRNAs that have been previously reported to involve in cancer pathogenesis. 
Overall, we discovered five miRNAs that were significantly upregulated at least 2-fold (P-value < 0.05) in the 
patients with good survival. These miRNAs were miR-146a-5p, miR-99a-5p, miR-126-3p, miR-125b-5p and 
miR-148a-3p (Table 2). 
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Table 1. Demographic data of lung cancer patients from the UKMMC.  

Patient Prognosis Survival 
(days) Gender Age Race Diagnosis 

1 

Good 

927 Male 64 Malay Adenocarcinoma 
2 549 Male 65 Chinese Adenocarcinoma well differentiated 
3 700 Female 72 Chinese Primary adenocarcinoma 
4 2261 Female 49 Chinese Squamous cell carcinoma, poorly differentiated 
5 1134 Female 69 Chinese Adenocarcinoma 
6 707 Male 74 Chinese Lung adenocarcinoma, moderately differentiated 
7 

Poor 

53 Male 51 Chinese Squamous cell carcinoma, poorly differentiated 
8 13 Male 77 Malay Primary adenocarcinoma 
9 21 Female 84 Chinese Squamous cell carcinoma 

10 56 Male 74 Chinese Squamous cell carcinoma, moderately 
differentiated 

11 13 Female 65 Malay Adenocarcinoma with bronchioalveolar carcinoma 
compartment 

12 1 Male 75 Malay Poorly differentiated adenocarcinoma 
13 49 Female 76 Chinese Lung Adenocarcinoma 
14 21 Male 69 Malay Small cell carcinoma 
15 35 Male 70 Chinese Adenocarcinoma, poorly differentiated 
16 98 Male 84 Malay Poorly differentiated, adenocarcinoma 
17 249 Male 75 Chinese Large cell carcinoma, undifferentiated 
18 175 Male 70 Chinese Adenocarcinoma 
19 198 Female 55 Malay Squamous cell carcinoma 
20 69 Male 59 Indian Large cell carcinoma 
21 322 Female 64 Malay Adenocarcinoma, moderately differentiated 
22 140 Female 46 Malay Adenocarcinoma 

 
Table 2. List of significantly upregulated miRNAs with good survival.  

miRNAs Normality test Fold change 
(High vs low) p-value 

miR-146a-5p Passed 3.40 0.0104 
miR-99a-5p Passed 2.48 0.0285 
miR-126-3p Passed 2.14 0.0331 
miR-125b-5p Passed 2.47 0.0335 
miR-148a-3p Passed 2.36 0.0346 

 
Validating the miRNAs profiling findings 

Next, we checked whether our present findings were concordant with what had been previously 
reported. To this end, we utilised the TCGA LUAD dataset (https://portal.gdc.cancer.gov/projects/TCGA-
LUAD), which is the most comprehensive molecular analysis of lung cancer samples to date (n=585 cases). 
By utilising the OncoLnc webtool, we observed that high expression of miR-146a-5p, miR-99a-5p, and miR-
148a-3p was significantly associated with better prognosis in the TCGA LUAD patient cohort. However, we 
found that the expression levels of miR-125b-5p and miR-126-3p did not correlate with the prognosis status of 
TCGA LUAD patients due to a non-significant P-value of > 0.05 (Figure 1). Three out of five miRNAs we found 
to be significantly associated with good survival in our patient cohort were concordant with better prognoses in 
the TCGA LUAD patient cohort. As the P-value of miR-146a-5p is close to 0.05, we focused on miR-99a-5p 
(P-value = 0.0123) and miR-148a-3p (P-value = 0.0269) as the significant miRNA in the following analysis. 
 
Predicting miR-99a-5p and miR-148a-3p target genes 

Next, we aimed to identify high-confidence putative target genes for miR-99a-5p and miR-148a-38p. 
The analysis pipeline to attain this objective is depicted in Figure 2. We first performed a parallel analysis using 
two different miRNA target genes prediction webtools, miRWalk and MirTarBase. After removing the redundant 
genes, the miRWalk predicted 611 and 806 putative target genes for miR-99a-5p and miR148a-3p, 
respectively. The MirTarBase, on the other hand, predicted that miR-99a-5p and miR148a-3p had 133 and 213 
putative target genes, respectively. In the subsequent analysis step, we focused on narrowing down the 
miRWalk prediction gene lists. Since high expression of miR-99a-5p and miR148a-3p were associated with 
good survival, we postulated that these miRNA's target genes should be downregulated in patients with better 
prognoses and vice versa. Therefore, we employed this rationale to prioritise the miR-99a-5p and miR148a-3p 
target genes further, as predicted by the miRWalk webtool. To achieve this objective, we utilised the GEPIA2 
webtool to observe if there was any correlation between the expression level of these genes and the TCGA 
LUAD patients’ prognosis. The GEPIA2 analysis found that high expression of 64 out of the 611 miR-99a-5p 
putative target genes was significantly associated with poor prognosis. Meanwhile, for the miR-148a-3p, high 
expression of 95 putative target genes was associated with poor survival, bringing the total number of unique 
target genes to 154. 
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Fig. 1. Overall survival analysis for TCGA LUAD patient cohorts. High (red line) and low (blue line) expression of (a) mir146a-
5p, (b) mir99a-5p, (c) mir126-3p, (d) mir125b-5p, and (e) mir148a-3p was analyzed using Kaplan-Meier plot 
 

 

 
 

Fig. 2. Analysis pipeline for obtaining high confidence mir99a-5p and mir148a-3p putative target genes 
 
GO and pathway enrichment analysis of miR-99a-5p and miR148a-3p target genes 

Functional enrichment analysis was conducted on the target gene sets of miR-99a-5p and miR148a-
3p to identify biological processes and pathways that are statistically associated with lung cancer. By analysing 
the BP, we found the putative target genes of miR-99a-5p we enriched in positive regulation of apoptotic 
process (GO:0043065), mRNA transport (GO:0051028), regulation of translation (GO:0006417), response to 
virus (GO:0009615), histone H4 deacetylation (GO:0070933) and G1/S transition of the mitotic cell cycle 
(GO:0000082) (Figure 3a). Meanwhile, stem cell division (GO:0017145), neuron migration (GO:0001764), 
positive regulation of DNA ligation (GO:0051106), modulation by virus of host process (GO:0019054), cerebral 
cortex radially oriented cell migration (GO:0021799), nucleobase-containing compound metabolic process 
(GO:0006139), G2/M transition of mitotic cell cycle (GO:0000086). cell-cell adhesion (GO:0098609) and lipid 
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biosynthetic process (GO:0008610) are among the BP that were enriched among the target gene sets of miR-
148a-3p (Figure 3b). The enrichment analysis of KEGG pathways demonstrated the association of chronic 
myeloid leukaemia (hsa05220), small cell lung cancer (hsa05222), hepatitis B (hsa05161) and Huntington's 
disease (hsa05016) among miR99a-5p target genes (Figure 4c), whilst miR148a-3p target genes were closely 
associated with sphingolipid signalling pathway (hsa04071), hippo signalling pathway (hsa04390) and 
pancreatic cancer (hsa05212) (Figure 4d). The detailed results for the following BP and pathway are listed in 
Table 3. Our functional enrichment analysis revealed that the identified biological function and pathways could 
significantly affect lung cancer survival. However, further study is required to validate our findings 
experimentally. 

 

 
Fig. 3. Functional enrichment analysis of target genes. The bar graph depicts the biological process (BP) involved in both 
target genes of (a) miR99a-5p and (b) miR148a-3p. Meanwhile, (c) and (d) denote KEGG pathway of target genes from miR-
99a-5p and miR148a-3p, respectively. The count of target genes is assigned to the x-axis and GO term of BP and pathway 
to the y-axis 
 

 
Fig. 4. PPI network highlights the physical and functional associations of miR-99a-5p and miR148a-3p target genes from the 
STRING database. The nodes represent proteins while the edges are their interactions. Different colouring of edges 
represents the evidence of known interactions from curated databases (turquoise), physical interactions/experimentally 
validated (purple) and functional associations (grey) 
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Table 3. GO biological process and KEGG pathways of enriched miR-99a-5p and miR148a-3p downstream targets 

Identity Term Count Genes % p-value Fold 
enrichment 

GO:0051028 mRNA transport 3 RBM8A, IGF2BP1, 
MAGOHB 4.6875 0.009649 19.8487 

GO:0006417 Regulation of translation 3 RBM8A, AKT2, EIF4E 4.6875 0.011718 17.94017 

GO:0043065 Positive regulation of 
apoptotic process 5 

APAF1, ITSN1, 
HMGA2, PDCD2, 
SUDS3 

7.8125 0.014724 5.182716 

GO:0070933 Histone H4 deacetylation 2 HDAC2, RCOR1 3.125 0.028057 69.10288 

GO:0000082 G1/S transition of mitotic cell 
cycle 3 CDK6, RPA1, EIF4E 4.6875 0.041199 9.145969 

GO:0009615 Response to virus 3 CDK6, DDX58, 
HMGA2 4.6875 0.047196 8.480808 

GO:0008610 Lipid biosynthetic process 3 AGPS, ACSL4, 
PRPF19 3.157895 0.002425 39.98095 

GO:0098609 Cell-cell adhesion 6 
SLK, TES, STK24, 
OLA1, UBAP2, 
MAPRE1 

6.315789 0.01459 4.130873 

GO:0001764 Neuron migration 4 SATB2, FBXO45, 
CDK5R1, PAFAH1B1 4.210526 0.0183 7.107725 

GO:0017145 Stem cell division 2 CUL3, PAFAH1B1 2.105263 0.021034 93.28889 

GO:0051106 Positive regulation of DNA 
ligation 2 RAD51, HMGB1 2.105263 0.021034 93.28889 

GO:0006139 
Nucleobase-containing 
compound metabolic 
process 

3 BRIP1, DUT, AK4 3.157895 0.027804 11.42313 

GO:0000086 G2/M transition of mitotic cell 
cycle 4 MAPRE1, HAUS2, 

YWHAG, PAFAH1B1 4.210526 0.0363 5.447526 

GO:0019054 Modulation by virus of host 
process 2 KPNA4, KPNB1 2.105263 0.036523 53.30794 

GO:0021799 Cerebral cortex radially 
oriented cell migration 2 FBXO45, RAC1 2.105263 0.046713 41.46173 

hsa05161 Hepatitis B 4 CDK6, APAF1, 
DDX58, AKT2 6.25 0.018532 6.77734 

hsa05220 Chronic myeloid leukemia 3 HDAC2, CDK6, AKT2 4.6875 0.032037 10.23661 

hsa05016 Huntington's disease 4 HDAC2, APAF1, 
VDAC2, RCOR1 6.25 0.038291 5.118304 

hsa05222 Small cell lung cancer 3 CDK6, APAF1, AKT2 4.6875 0.043379 8.671008 

hsa04071 Sphingolipid signaling 
pathway 4 CERS6, PIK3CA, 

PPP2R1B, RAC1 4.210526 0.026148 6.034211 

hsa04390 Hippo signaling pathway 4 FRMD6, PPP2R1B, 
ID1, YWHAG 4.210526 0.046782 4.795399 

hsa05212 Pancreatic cancer 3 RAD51, PIK3CA, 
RAC1 3.157895 0.047373 8.355061 

 
 
PPI network and subnetworks detection of miR-99a-5p and miR148a-3p target genes 

The physical and functional associations of 154 miR-99a-5p and miR148a-3p target genes were 
retrieved from the STRING database to build the PPI network. In total, we discovered 172 interactions among 
109 putative downstream genes. The remaining 45 genes were identified as single nodes and removed due to 
the absence of interactions among the genes. Following the elimination of single nodes, a PPI network of the 
target genes was established based on a confidence score of ≥ 0.4 (Figure 4). In addition, three significant 
subnetworks representing densely connected regions were identified with the density (D) of the subnetwork 
(SN) 1 = 4.667, SN2 (D = 3.333) and SN3 (D = 3.0) (Table 4).  
 PRPF19 and RAD51 had the highest degree of connectivity in SN1, where the number of edges was 
n=5, followed by EIF2S2 and KPNB1 in SN2 (n=3), and IGF2BP2, IGF2BP1 and HMGA2 in SN3 (n=3) (Figure 
5). The 17 shortlisted genes from subnetworks were examined further by peeking into their associations with 
LUAD or/and related diseases. However, only 14 genes were curated and associated with 14 disease 
categories based on DisGeNET scores ≥ 0.3. Among them, ~79% of the genes are involved in multiple types 
of neoplastic diseases caused by abnormal cell growth that can be benign or malignant. 
 SN1 highlighted the association of several miR-99a-5p and miR148a-3p target genes with neoplasms, 
especially MKI67 (n = 29), RAD51 (n = 23), SNRPD3 (n = 10), PRC1 (n = 9), PRPF19 (n = 4), MAGOHB (n = 
3) and CENPU (n = 1). SN1 was derived from PRPF19 and RAD51, enriched in lipid biosynthetic process and 
positive regulation of DNA ligation, respectively. In SN2, an enriched KPNB1 (n = 3) in modulation by virus of 
host process was found associated with infections, immune and neoplasm, suggesting its function in virus-
mediated oncogenesis and antiviral immune responses as reported in DisGeNET. For SN3, HMGA2 (n = 14) 
and IGF2BP1 (n = 1) were associated with neoplasms, whereas IGF2BP1 with a mental disorder, endocrine 
systems, and nutritional and metabolic diseases. We suggested association of reported genes with neoplastic 
diseases and other disease-related categories may directly or indirectly contribute to the advanced stage 
LUAD. All the target genes and their ranked associated disease categories are presented in Table 5. 
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Table 4. Three significant subnetworks identified from the PPI network by MCODE. 
Subnetwork Density 

score 
No. of target 

genes 
No. of 

interactions 
Target genes 

1 4.667 10 21 MKI67, PRPF19, MAGOHB, HNRNPDL, 
RBM8A, RAD51, SNRPD3, PRC1, CENPU, 

MND1 
2 3.333 4 5 KARS, KPNA4, EIF2S2, KPNB1 
3 3.000 3 3 IGF2BP2, IGF2BP1, HMGA2 

 
 
 

 
 

Fig. 5. Subnetworks of the densely connected region from the PPI network using MCODE. (a) Subnetwork 1; (b) Subnetwork 
2; (c) Subnetwork 3. Purple and turquoise colours of edges represented physical interactions and grey as functional 
association interaction 
 
 
Table 5. The shortlist of 14 genes from three subnetworks based on their significance in the top 2 highest disease categories 

Subnetwork Gene No. of degree in the subnetwork Disease category Disease 
count 

1 RAD51 5 Neoplasms 
Skin and connective tissue 23 

 MAGOHB 4 Neoplasms 
Endocrine system 3 

 PRC1 4 Neoplasms 
Skin and connective tissue 9 

 MKI67 4 Neoplasms 
Digestive system 29 

 PRPF19 5 Neoplasms 
Digestive system 4 

 CENPU 4 Neoplasms 
Digestive system 1 

 SNRPD3 4 Neoplasms 
Digestive system 10 

 RBM8A 4 Musculoskeletal 
Hemic and Lymphatic 3 

 HNRNPDL 4 Musculoskeletal 
Nervous system 2 

2 EIF2S2 3 Neoplasms 
Skin and connective tissue 5 

 KPNB1 3 
Infections 
Immune 

Neoplasms 
3 

3 IGF2BP1 2 Neoplasms 
Digestive system 1 

 IGF2BP2 2 
Mental disorders 

Nutritional and metabolic 
Endocrine system 

3 

 HMGA2 2 
Neoplasms 

Pathological condition 
Congenital, hereditary, and neonatal 

14 
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Fig. 6. Prognostic analysis of gene expression in advanced stage LUAD using GEPIA2 database. The overall survival 
analysis was based on mRNA expression levels of (a) TOMM22, (b) KPNA4, (c) HMGB1, (d) SUDS3 and (e) signature 
survival status in the TCGA LUAD patient cohort. The dotted line represents the 95% confidence interval. Gene expression 
levels of high and low expression groups demonstrate in solid red and blue lines, respectively 
 
Identification of high-confidence miR-99a-5p and miR148a-3p putative downstream targets  

To infer high-confidence putative downstream targets for miR-99a-5p and miR148a-3p, we combined 
the miRWalk-GEPIA2 target genes with functionally validated miRNA-mRNA interactions from miRTarBase-
curated target genes employed the miRTarBase webtool, which curates the functionally validated miRNA-
mRNA interactions. By utilising this webtool, we found 13 and 21 experimentally validated target genes for 
miR-99a-5p and miR148a-3p, respectively. Upon overlapping these two gene lists for each miRNA, we found 
SUDS3 and TOMM22 were the putative target genes for miR-99a-5p, each of the miRNAs. KPNA4 and HMGB1 
were the identified putative target genes for miR148a-3p. 
 
High expression of SUDS3, TOMM22, KPNA4 and HMGB1 in advanced stage LUAD 

By utilising the GEPIA2 webtool, we found that these genes' expression and clinical outcomes were 
higher in advanced-stage lung adenocarcinoma (Figure 6). The results demonstrated that high expression of 
TOMM22 (HR = 1.7, P = 0.01), KPNA4 (HR = 2.0, P = 0.0013), HMGB1 (HR = 1.7, P = 0.014), and SUDS3 
(HR = 1.6, P = 0.028) were associated with worse overall survival for LUAD patients. Based on these 
observations, these genes could play important roles in supporting lung adenocarcinoma pathogenesis and 
are worth comprehensively interrogating in future studies. Also, to functionally validate whether 
SUDS3/TOMM22 and KPNA4/HMGB1 are the direct downstream targets of miR-99a-5p and miR-148a-3p in 
lung adenocarcinoma, respectively. 
 
DISCUSSION 
In lung cancer, miRNAs have been shown to function as either tumour suppressors or oncogenes. 
Dysregulation of miRNAs may lead to aberrant expression of their target genes, ultimately resulting in 
tumorigenesis (Bartel, 2004; Bracken et al., 2016). Regulating genetic changes in cancer is a complex 
mechanism, as a single miRNA can target hundreds or thousands of mRNA molecules. Hence, the potential 
of miRNA as a specific target for treating lung cancer remains uncertain. In this study, miR99a-5p and miR148a-
3p were identified as potential biomarkers of survival in lung cancer patients. Several studies have shown that 
miR148a-3p acts as a tumour-suppressive miRNA by targeting oncogenic pathways, such as Ras, MAPK Erk 
and PI3K/AKT signalling (Xie et al., 2019; Yin et al., 2020), whereas miR99a-5p suppressed mTOR signalling 
(Tsai et al., 2018). Identifying the target genes regulated by the passenger strands of miR-99a-5p and miR-
148a-3p could offer valuable insights into the molecular mechanisms of LUAD.  
 To investigate the role of target genes in the GO biological process (BP) and pathway of LUAD, 
functional enrichment analysis was conducted by querying a list of target genes to DAVID v6.8. The enrichment 
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analysis of BP indicated that miR-99a-5p targets were predominantly enriched in positive regulation of 
apoptotic process, response to virus, G1/S transition of mitotic cell cycle, regulation of translation and mRNA 
transport. In cancer cells, miRNA-mediated regulation of apoptosis control cell survival by negatively regulating 
the oncogenes or genes involved in cell differentiation or apoptosis (Othman & Nagoor, 2014). Apoptosis and 
cell proliferation have also been linked with aberration in mitotic cell cycles (Li et al., 2017). Following our 
findings, HMGA2 and PDCD2 were significantly enriched in the apoptosis process. Shi et al., (2016) reported 
that knocking out HMGA2 increased the expression of pro-apoptotic genes Bax and reduced cell proliferation, 
indicating the anti-apoptotic ability of HMGA2 in cancer cells. A recent study by Leonardi et al., (2021) reported 
that CDK was dysregulated during virus infection to bypass the cell cycle in tumorigenesis. Thus, our target 
genes are consistent with enrichment in response to viruses and G1/S and G2/M transition of mitotic cell cycles.  
 Furthermore, we discovered that regulation of translation and mRNA transport were significant among 
the enriched BP and are crucial as key drivers of cancer initiation and progression. In our findings, EIF4E and 
IGF2BP1 were associated with good survival in the TCGA LUAD patient cohort. EIF4E, a cap-binding protein, 
interacts with the mRNA and undergoes recruitment of ribosomes, initiating translation and activating 
downstream oncogenes (Amorim et al., 2018; Jiang et al., 2013). EIF4E promotes cancer cell survival by 
translating mRNAs that regulate the production of intracellular reactive oxygen species (ROS) (Song et al., 
2021). ROS levels in cancer cells are higher than in normal cells. According to Truitt et al., (2015), the reduction 
of EIF4E results in excessive ROS production, revealing the importance of translation regulation under stress 
conditions. IGF2BP1 is a recognition protein that plays a role in the 6-methyladenine (m6A) modification that 
influences RNA transport and translation of tumour cells (Song et al., 2021). Altogether, dysregulation of m6A 
reader IGF2BP1 is closely associated with cancer progression, where the oncopeptide RBRP of IGF2BP1 
promotes tumorigenesis by enhancing m6A recognition and increasing the stability of target oncogenic c-Myc 
mRNAs (Zhu et al., 2020).  
 The enrichment of cancer-related pathways, including small cell lung cancer (SCLC), pancreatic 
cancer, chronic myeloid leukaemia (CML), Hippo and sphingolipid signalling pathways, offers valuable insights 
into the potential mechanisms involved in the development and progression of cancer. The Hippo and 
sphingolipid signaling pathways regulate cell proliferation and can serve as potential targets for treating various 
carcinoma cancers by either promoting tumor suppression or survival (Han, 2019; Ogretmen, 2018), as 
reported in LUAD (Wang et al., 2015), breast (Wei et al., 2018), pancreatic (Wu et al., 2021), and leukaemia 
(Noorbakhsh et al., 2021). Our findings suggest that the target genes are also associated with the Hippo and 
sphingolipid signalling pathways, which may impact the survival of patients with LUAD.  
 The protein-protein interaction (PPI) network is an effective tool for comprehending the intricate 
biological pathways contributing to various cellular processes. Constructing a PPI network entails retrieving 
interaction data from the STRING database, searching for known interactions, building the network, and 
analysing it to identify crucial nodes or subnetworks. Subnetwork detection from the PPI network is frequently 
used in determining the critical function of associated proteins in the pathogenesis and progression of diseases 
(Hu & Chen, 2012; Luo et al., 2013). The target genes of SN1, SN2, and SN3 exhibited significant associations 
with neoplastic diseases. SN1 is derived from two hub nodes, namely RAD51 and PRPF19 genes. RAD51 and 
PRPF19 genes are the key players in DNA damage response. A clinical trial by Nogueira et al., (2010) 
discovered that the RAD51 G135C polymorphism predicts a better prognosis of lung cancer after first-line 
chemotherapy. To date, the role of PRPF19 remained unelucidated in LUAD. However, the PRPF19 gene was 
significantly upregulated in tongue tissue, as He et al., (2021) discovered in their study, where PRPF19 
promotes cell proliferation and migration in tongue cancer cells. In addition, PRPF19 expression is associated 
with a poor prognosis due to the presence of PRPF19 that influences chemoradiotherapy resistance by 
regulating the expression of SLC40A1, an iron transporter gene, and MACROD2, a DNA damage responsive 
gene (He et al., 2021).  
 KARS, KPNA4, EIF2S2, and KPNB1 were clustered in SN2. The interaction of SN2 genes, direct or 
indirect, is strongly supported by evidence of their association with the progression of LUAD. For example, 
LUAD patients with higher expression of KPNB1 and EIF2S2 have a poorer prognosis than those with a 
knockdown of KPNB1 and EIF2S2 (Du et al., 2021; Tanaka et al., 2018). KPNA4 is a nuclear import protein 
that is vital in promoting malignant phenotypes in LUAD cells (Hu et al., 2020). Both KPNA4 and KPNB1 were 
enriched in the modulation of the virus-mediated host process, and autophagy has been reported to influence 
tumour behaviour, especially at the early stages of oncogenesis (Leonardi et al., 2021). KARS encodes 
aminoacyl-tRNA synthetase, which is required for mRNA translation and has become a target of autoantibodies 
in autoimmune diseases (Vargas et al., 2020). It was found that autoimmune diseases are associated with 
LUAD. Zhou et al., (2019) suggested that autoimmune diseases may share risk factors with LUAD rather than 
the autoimmune disease alone. 
 The SN3 suggested the association of HMGA2, IGF2BP1, and IGF2BP2 in mRNA transport and 
apoptosis of LUAD. This result is supported by Müller et al., (2018) from their study, where the upregulation of 
IGF2BP1 levels contributes to the downregulation of miRNA-regulated target mRNAs. IGF2BP2 maintains 
cancer cells by interfering with the inhibition of let-7 miRNAs-regulated target mRNAs, whereas IGF2BP3 
contributes to the downregulation of the apoptotic-related gene HMGA2. HMGA2 plays a role in cancer 
development by enhancing the cell cycle and inhibiting apoptosis (Mansoori et al., 2021). It is suggested that 
IGF2BP1, IGF2BP2, and HMGA2 might be candidate targets for effective therapeutic intervention of aggressive 
tumour cells in LUAD patients. 
 To summarise, this study has identified two miRNAs, namely miR-99a-5p and miR-148a-3p, as 
potential biomarkers for predicting survival in lung cancer patients. Moreover, these miRNAs appear to target 
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certain genes, including SUDS3, TOMM22, KPNA4, and HMGB1, which have been linked to poor overall 
survival rates in individuals with LUAD. These findings suggest that these miRNAs and their target genes may 
play crucial roles in the development and progression of LUAD. These findings suggest that both miRNAs may 
have important diagnostic and therapeutic implications for lung cancer management. However, further studies 
are needed to validate these miRNAs as prognostic biomarkers and to explore their potential as targets for 
novel cancer therapies. 
 
CONCLUSION, LIMITATION AND FUTURE PROSPECT  
In summary, a miRNAs profile between high and low survival of LUAD patients in the Hospital Canselor Tuanku 
Muhriz UKM (HCTM), Kuala Lumpur was generated and demonstrated both miR99a-5p and miR148a-3p as 
potential biomarkers that could predict survival of LUAD. These miRNAs were highly expressed in high survival 
LUAD patients. Our findings demonstrated an essential role of the target genes of miR99a-5p and miR148a-
3p in the progression of LUAD based on their involvement in significant biological processes (BPs), including 
positive regulation of apoptotic process, mRNA transport, regulation transport and G1/S transition of mitotic 
cell cycle, cell-cell adhesion, G2/M transition of mitotic cell cycle and lipid biosynthetic process. The study of 
subnetwork detection from PPIN of miR99a-5p and miR148a-3p target genes and their association with 
neoplastic diseases and cancer-related BPs support the function played by these genes to participate in LUAD 
progression and pathogenesis. Four candidate target genes, SUD53, TOMM22, KPN4, and HMGB1, were 
significantly associated with the poor prognosis of LUAD patients and could be used as therapeutic biomarkers 
in preventing LUAD. This integrated analysis will assist many clinicians in understanding the multidimensional 
nature of cancer to discover new biomarkers and expedite the development of effective therapies in the future. 
 Nevertheless, to determine the exact role of the target genes in LUAD, further molecular biological 
experiments are necessary. Also, it is important to note that the small number of samples from LUAD patients 
between 2003–2013 was a limiting factor in our study. Our miRNA predictive markers were obtained based on 
the available lung cancer dataset. This hindered our ability to advance our understanding of biomarkers that 
are differentially expressed based on the aspect of the tumour. A larger dataset may provide more accurate 
results. Obtaining more samples and performing the validation would be valuable in furthering our research in 
this area. 
 In recent years, bioinformatics research has become increasingly capable of analysing vast and 
intricate genomic information with a broad range of applications. Our research findings on the miRNA as 
potential biomarkers and their target genes in the survival of LUAD may enhance comprehension of the 
fundamental molecular mechanisms of LUAD and furnish valuable insights for forthcoming investigations on 
new LUAD anticancer therapies. In the coming years, the accessibility of biological databases tailored to LUAD, 
predicted genes linked to LUAD, and solid experimental data obtained from the Malaysian population are 
expected to boost the precision and efficacy of lung cancer patient survival. 
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