
Malaysian Applied Biology (2024) 53(4): 115-124
https://doi.org/10.55230/mabjournal.v53i4.3050

INTRODUCTION
Green sea turtles (Chelonia mydas) locally known as ‘penyu 
agar’ are the major landers on Sarawak Turtle Islands (STI). 
They could travel thousands of kilometres to the foraging 
grounds for food and usually adult females will return to mate 
and nest at their natal beach. The presence of these majestic 
creatures enriches both the marine ecosystem and the local 
heritage.

Sea turtle landings involve the arrival of both male and 
female turtles onto nesting beaches, with females primarily 
arriving to lay their eggs in meticulously crafted nests dug into 
the sand. However, the conservation of these nesting sites 
faces challenges, including anthropogenic disturbances, 
climate change impacts, and habitat degradation. Effective 
conservation strategies necessitate reliable forecasting of 
turtle landings to inform adaptive management practices and 
mitigate threats to their survival.

Turtle studies in Malaysia largely focus on nesting 
biology and its management (Tisen et al., 2002; Abd. Mutalib 
& Fadzly, 2015; Abd. Mutalib et al., 2015), ecology (Bali et al., 
2000; Pilcher, 2010; Tinsung et al., 2011; Hassan & Yahya, 
2022) as well as genetic studies (Joseph & Shaw, 2011; 
Yahya et al., 2012; Joseph et al., 2014; Jensen et al., 2016; 
Joseph et al., 2016; Joseph & Nishizawa, 2016; Nishizawa 
et al., 2016; Joseph et al., 2017). Minimal attention has 
been given to the turtle landing pattern and its significance 
for the population due to limited available data, making 
modeling and forecasting challenging. Traditional methods 
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ABSTRACT

Green sea turtles, known scientifically as Chelonia mydas, prefer to nest on specific sandy beaches in Sarawak, 
particularly within the Sarawak Turtle Islands (STI). The number of turtles landing, among other variables (number 
of eggs collected, eggs incubated, and eggs hatched) is an important element in assessing the population size 
in Sarawak. However, modeling and predicting the number of turtles landing presents challenges due to limited 
data availability, resulting in less accurate forecasts for medium and long-term periods. To overcome this problem, 
this study presents a Grey Model (GM) approach, leveraging its capacity to effectively model systems with limited 
data, irregular patterns, and a lack of prior knowledge. Using data from 1949 to 2016, GM (1,1) was found to 
be the most suitable model for the given dataset, exhibiting the lowest Root Mean Square Error (RMSE) and 
Mean Absolute Error (MAE) as compared to other statistical models such as Autoregressive Integrated Moving 
Average (ARIMA), Long Short-Term Memory (LSTM) and Exponential Smoothing. The model also suggested that 
the current conditions will likely increase turtle landings. This approach will find useful applications in evaluating the 
conservation status of the species.
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of predicting turtle landings often utilize basic statistical techniques that may not account for all relevant 
factors influencing landing frequencies.

Grey System Theory (GST) or Grey Model (GM) offers a promising framework for modeling systems 
with limited data (Quartey-Papafio et al., 2021) and uncertain dynamics, making it particularly suitable 
for forecasting ecological phenomena such as sea turtle landing activities. In agricultural science 
research, GM techniques have been applied to solve problems and contribute to the development of food 
security early warning prediction by utilizing GM and food quality index (Wang et al., 2012.). Numerous 
researchers have made efforts to enhance the accuracy of grain yield prediction by developing different 
combined prediction models. These involve merging the GM with the Markov model (Fan et al., 2019), 
support vector machine (Hu & Chen, 2021), and backpropagation neural network (Yang et al., 2015). 
A high prediction accuracy is achieved when utilizing the method. Enhanced GMs also contribute to 
predicting the occurrence of crop diseases and insect pests, such as the cotton spider mite (Wang et 
al., 2017).

GM has found diverse applications in environmental studies, including the analysis, and forecasting 
of CO2 emissions (Wang & Si, 2024). GM offers a robust framework for analyzing historical emission 
data, identifying trends, and predicting future emission levels. By considering the inherent uncertainties 
and irregularities in emission data, GM can provide valuable insights into the factors driving CO2 
emissions, such as industrial activities, energy consumption patterns, and land-use changes (Ayvaz et 
al., 2017).

GMs, though not as pervasive in animal analysis as in other fields, offer a versatile and adaptable 
approach to understanding ecological dynamics, population trends, and species distributions. One 
significant application lies in fisheries management. By modeling fish population dynamics and catch 
data, GMs help forecast future fish stocks and assess the sustainability of fishing practices (Li, 2011; 
Xia et al., 2019; Xie & Chen, 2019; Lu & Chen, 2021).

Motivated by the need for accurate forecasting methods to support conservation efforts for Green 
Sea Turtles in Sarawak, this study utilized the GM approach to model and forecast the number of turtle 
landings in the region. By comparing the GM methodology and another statistical model, this study 
aimed to provide insights into the temporal patterns of turtle landings in Sarawak, offering valuable 
information to guide conservation strategies and protect the nesting habitats of Green Sea Turtles.

MATERIALS AND METHODS
Study site and data collection

The primary nesting area for Sarawak’s Sea turtle population is found off the coast of Southwest 
Sarawak on three islands collectively referred to as the STI (Leh et al., 1985). These islands include 
Talang Talang Besar, Talang Talang Kecil, and Satang Besar (Figure 1).

Fig. 1. Location of turtle foraging ground in Sarawak.
 



117Shakawi et al., 2024

This study utilized secondary data from two distinct sources. The annual turtle landing figures spanning 
from 1980 to 2016 were acquired from the Turtle Board of Sarawak Museum, while the landing data 
preceding 1980 was retrieved from Mortimer et al. (1990).

Grey Model
The Grey Model (GM) is a forecasting model for time series data that consists of three fundamental 

steps: accumulated generation, inverse accumulated generation, and grey modeling. The grey 
forecasting model utilizes accumulation operations to create differential equations, which reduces the 
amount of data required for modeling the series.

Let the initial time series be
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 - Equation 1
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The first-order differential equation is then
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and its difference equation is
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where Z(1)(k) is the mean generation sequence of X(1). Then, utilizing the initial condition
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Finally, the predicted value of x(0)(k+1) at time k+1 can be expressed as
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Benchmark models and evaluation metrics
Autoregressive Integrated Moving Average Model (ARIMA) model

The ARIMA (p, d, q) model is comprised of the order of autoregressive terms (p), the degree of 
differencing (d), and the order of moving average terms (q). An ARIMA model can be expressed by the 
following formula:
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 φ φ δ θ θ− − − − = + − − − 1 1(1 )(1 ) (1 )p d q
p t q tB B B y B B a     - Equation 9

The ARIMA model involved 3 stages. The initial stage is to identify data attributes, such as trends, 
seasonality, and irregular patterns. The model's parameters p, d, and q were then estimated by utilizing 
the autocorrelation function (ACF) and the partial autocorrelation function (PACF) plots. Finally, a few 
suggested models are obtained, and the model's goodness of fit is assessed by observing the Akaike 
Information Criterion (AIC) or Bayesian Information Criterion (BIC).

Long Short-Term Memory (LSTM) model
The LSTM model is a recurrent neural network that can learn order dependence in sequential data. 

Recurrent neural networks have a series of repeating modules. As depicted in Figure 2, a typical LSTM 
unit is composed of a cell, an input gate, an output gate, and a forget gate. The forget gate can be found 
in the first part of the cell and is used to control the extent to which the hidden state of the previous cell 
can be forgotten. Following that, the input gate governs how much new information will be retained in 
the current cell state. Finally, the output gate is used to show the output of the current cell.

Fig. 2. Structure of the LSTM cell.

Unlike traditional models such as autoregressive models (AR) or moving average models (MA), 
which typically consider a fixed number of lagged observations, LSTMs dynamically learn which past 
observations are important. By feeding the model sequences of historical data, LSTMs can extract both 
short-term variations (captured in the hidden state) and long-term trends (captured in the cell state). As 
new time steps are added, the LSTM updates its internal state to make predictions about the next time 
step, utilizing its learned temporal dependencies.

The equations involved in the LSTM are listed below:

Equations 10-15:
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where it is the value of the input gate, tC is state value, ft is the value at forget gate, Ct is updated 
cell state value, ot is the value of the output gate and ht is the value of a hidden state. Wi, Wc,  Wf and  
Wo represent four distinct matrix weights, bi, bc, bf and bo represent the offset, σ is the sigmoid function. 
The symbol   represents the vector outer product.
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Exponential smoothing
Exponential smoothing is a simple forecasting method that emphasizes more recent observations 

by applying exponentially decreasing weights to past data points. This technique is particularly useful 
for time series that exhibit level trends or seasonality, as it adapts to changing patterns by adjusting the 
weight placed on past values. Holt’s Linear Trend Model, a variant of exponential smoothing extends 
simple exponential smoothing by incorporating both a level and a trend component, making it ideal for 
time series data that exhibit a trend over time.

The equations for Holt’s Linear Trend Model are as follows:

Equations 16-18:
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In Equation 16 (Level Equation),  is the estimated level at time t, α is the smoothing parameter 
for the level, and bt-1  is the trend from the previous period. In Equation 17 (Trend Equation), bt  is the 
estimated trend at time t, and β is the smoothing parameter for the trend. In Equation 18 (Forecast 
Equation), h is the number of steps ahead to forecast.

Evaluation metrics
Two metrics were used to assess the forecasting models' performance: the Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE).

Equations 19 & 20:

 



( )

1

2

1

1

1

n

t t
i

n

t t
i

MAE Y Y
n

RMSE Y Y
n

=

=

= −

= −

∑

∑

Here, n is the number of observations, Yt is the actual value and  tY  is the forecasted value. These 
metrics will be used on the forecasted value obtained from each model for our sample data.

RESULTS AND DISCUSSION
Data classification

The data for this study consists of 68 yearly data recorded from 1949 to 2016. As shown in Figure 
3, the dataset exhibits a downward trend over the observed period, indicating a consistent decrease 
in the number of green sea turtle landings. No seasonal patterns were apparent, suggesting that the 
fluctuations in turtle landings are not influenced by yearly cycles or recurring seasonal events. The 
dataset was divided into two groups: training (80% of the samples) and testing (20% of the samples). 
The training set will be used to build the GM (1,1) model, and the testing set will be used to evaluate the 
model's forecasting ability. This approach mirrors the evaluation methodology applied to the benchmark 
models.

GM (1,1)
The Grey Model is particularly suitable for this study due to the limited number of data points (68 

yearly data), as GM (1,1) is known for its ability to model systems with small sample sizes, overcoming 
the limitations of other forecasting methods that require larger datasets for reliable predictions. The 
forecasting equation GM (1,1) was obtained by having parameters 0.07273875α =  and 18394.5β = .

  0.7273875( 1)( ) 245560.05 252855.05kx k e − −= − +                - Equation 21
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Despite the data showing a general downward trend, the positive α suggests that the long-term 
dynamics are influenced by external factors that may cause periodic rebounds and the overall system 
still has the potential for minor recovery phases. Given that turtle populations may fluctuate due to 
various ecological or anthropogenic factors, this parameter helps capture subtle variations in the landing 
counts that are not strictly linear or consistently declining.

The value of β being relatively large suggests that, historically, there was a significant baseline 
level of turtle landings. This could be related to favorable environmental conditions in the earlier years 
or strong conservation efforts. Over time, factors such as habitat degradation, changes in ocean 
conditions, or human activities might have contributed to a gradual decrease, but the baseline influence 
remains strong.

Fig. 3. Turtle landing trend from year 1949 to 2016

ARIMA
Stationary testing was conducted to assess the time series properties of the data, ensuring that the 

assumptions of the ARIMA analysis were met. An augmented Dickey-Fuller (ADF) test was performed 
to determine the presence of trends or seasonality in the dataset. The result of the ADF test is shown 
in Table 1.

Table 1. Stationary test for turtle landing data
t-Statistic Prob

Level -1.7365 0.6806
First difference -5.3239 0.01*

*Significant at 5% significance level

From Table 1, the data is stationary at the first difference. The ARIMA model parameters were 
estimated using the maximum likelihood estimate. The Akaike Information Criterion (AIC) and the 
Ljung-Box test were utilized to determine the adequacy of the model. ARIMA (1,1,2) was chosen as the 
best model having the lowest AIC values.

 2(1 0.5821)(1 ) (1 0.6319 0.7151 )tB x B B δ+ − = + −                - Equation 22

LSTM
A univariate LSTM model was trained using the input from the original data. The hyperparameter 

settings were manually tweaked to produce the best model performance throughout the training phase. 
After several iterations, the hyperparameter settings were identified, as shown in Table 2.
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Table 2. Hyperparameter setting for LSTM model
Hyperparameter Value

Hidden layer 1
Hidden neuron 64

Batch size 32
Epochs 100

Loss function MSE
Optimizer Adam

The choice of a single hidden layer with 64 neurons allowed the model to effectively capture the 
complexity of the time series data while preventing overfitting. The batch size of 32 facilitated efficient 
training by balancing the trade-off between computational efficiency and model convergence speed. 
Training the model for 100 epochs ensured sufficient iterations to minimize the loss function, defined 
as Mean Squared Error (MSE). Utilizing the Adam optimizer, recognized for its adaptive learning rate 
capabilities, contributed to faster convergence and improved performance compared to standard 
gradient descent methods.

Exponential smoothing
Holt’s Linear Trend model was applied to the turtle landing data to capture both the level and the 

trend over time. The model’s smoothing parameters, α = 0.1705 and β = 0.0535, indicate moderate 
adjustments to both the level and trend based on new observations. The initial level was estimated to 
be 16919.22, with a negative trend of -658.04, suggesting a steady decline in turtle landings over the 
observed period. For any h-step ahead forecast, the equation becomes:

  16919.2245-658.042t hy h+ =                  - Equation 23

The model fit was evaluated using metrics such as AIC (1084.51), suggesting a reasonably good 
fit for this type of model. The decreasing trend observed in the forecasts aligns with the historical 
data pattern, confirming the appropriateness of using Holt’s Linear Trend model to forecast the turtle 
landings.

Forecasting performance on the dataset
Each model was fitted using the respective training dataset, allowing them to learn the underlying 

patterns and relationships present in the historical data. Figure 4 shows the forecasted value of each 
model on the training data.

Fig. 4. Forecasted value of different models on the training data period (1949-2002).

Figure 4 illustrates that GM (1,1) effectively captured most of the spike in the data, demonstrating 
its ability to discern and adapt to sudden changes or anomalies in the data. This capability is attributed 
to GM's inherent robustness and adaptability, allowing it to respond promptly to variations in the data 
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without overfitting or being excessively influenced by outliers. As a result, GM's forecasts closely align 
with the observed values during periods of significant deviation, highlighting its reliability in capturing 
both long-term trends and short-term fluctuations in the time series. The performance of the GM (1,1) 
was further evaluated using MAE and RMSE as shown in Table 3.

Table 3. Performance of GM (1,1) and other models in the training and testing period 
Model Training Period

(1949-2002)

Testing Period

(2003-2016)
MAE RMSE MAE RMSE

GM (1,1) 1407.639 1982.846 288.457 351.5474
ARIMA (1,1,2) 1419.177 1988.404 291.784 355.9078

LSTM 2374.8407 3736.8079 644.8221 855.2097
Holt’s Linear 1914.6855 2848.9360 415.0533 493.9596

GM (1,1) outperformed other models in terms of MAE and RMSE in both training and testing periods, 
indicating its superior accuracy in predicting the observed values. Furthermore, the consistency of GM 
(1,1)'s performance across both training and testing periods highlights its robustness and generalization 
ability, further validating its suitability for forecasting the turtle landing frequency.  ARIMA, LSTM, and 
Holt’s Linear models struggle with small or noisy datasets, as they require enough data to accurately 
capture patterns and dependencies. In contrast, GM is specifically designed to handle limited or 
irregular data, making it more suitable for such scenarios. ARIMA models assume linear relationships 
and stationarity in the data, which may not always hold for complex or nonlinear time series (Quartey-
Papafio et al., 2021). Similarly, LSTM models, while powerful in capturing temporal dependencies, are 
prone to overfitting, especially in the presence of noisy or irregular data. Moreover, Holt's method can 
be sensitive to outliers, potentially distorting the trend estimation and leading to less accurate forecasts. 
GM, with its simpler structure and focus on trend and pattern extraction, may be more robust in such 
cases.

Fig. 5. Forecasted value of different models on the testing data period (2003-2016).

Further exploration of the GM (1,1) model on turtle landing data reveals an upward trend in the 
next forecasted year, indicating a potential increase in turtle landings compared to previous periods 
(Figure 5). This insight suggests that environmental factors or nesting behaviors conducive to turtle 
landings may be influencing the observed trend, highlighting the importance of continued monitoring 
and conservation efforts to protect turtle habitats and ensure their long-term survival.

CONCLUSION 
In conclusion, this study has demonstrated the efficacy of the Grey Model in forecasting Green Sea 
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Turtle (Chelonia mydas) landings in Sarawak. By leveraging GM (1,1) methodology and historical 
landing data, we have provided valuable insights into the temporal dynamics of turtle nesting behaviors 
in the region. Our findings reveal GM (1,1) as a reliable forecasting tool, capable of capturing both short-
term fluctuations and long-term trends in turtle landings. The model's ability to adapt to irregular and 
limited data underscores its suitability for predicting turtle populations in data-constrained environments. 
Through the identification of upward trends in future forecasted years, this research not only aids in 
the understanding of turtle nesting patterns but also facilitates informed conservation strategies for 
protecting these endangered species and their habitats. Moving forward, the integration of GM-based 
forecasting into conservation management frameworks holds promise for enhancing the sustainability 
of turtle populations in Sarawak and beyond.
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