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INTRODUCTION
Over the recent years, hypercholesterolemia patients have consumed statins to limit LDL cholesterol production in the liver. The 
Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial--Lipid Lowering Trial (ALLHAT-LLT) involving 2867 
individuals with moderate hyperlipidemia and hypertension has suggested that pravastatin possesses a non-significant benefit 
for the primary prevention of cardiovascular diseases (Han et al., 2017). Alternatively, proprotein convertase subtilisin-kexin type 
9 (PCSK9) inhibitor such as  alirocumab and evolocumab, can significantly reduce low-density lipoprotein cholesterol (LDL-C) 
level, which has emerged as the latest treatment for hypercholesterolemia (Chaudhary et al., 2017). Statins reduce hepatic 
cholesterol synthesis but also increase PCSK9 levels, which can limit their effectiveness. In contrast, PCSK9 inhibitors specifically 
block PCSK9, preventing LDL receptor (LDLR) degradation, increasing LDL uptake, and lowering the risk of atherosclerosis and 
ischemic stroke (Chaudhary et al., 2017).

PCSK9 protein (~74 kDa) is the ninth member of the proprotein convertase family, encoded by PCSK9 gene located at 
chromosome 1p32.3. This protein undergoes two cleavage processes for maturation, activation and secretion. The PCSK9 
protein (UniProt ID: Q8NBP7) consists of a signal peptide (residues 1 - 30) which directs the nascent protein into the secretory 
pathway, an N-terminal domain (residues 31 - 152) required for proper folding and self-inhibition of the enzyme, a subtilisin-like 
catalytic domain (residues 153 - 425) responsible for autocatalytic cleavage and interaction with the low density lipoprotein 
receptor (LDLR), and a C-terminal domain (residues 426 - 692) which contributes to LDLR binding and regulates PCSK9 
stability and activity. In addition to its structural organization, PCSK9 undergoes posttranslational modifications, most notably 
phosphorylation at multiple serine residues (e.g., Ser47, Ser666, Ser668, and Ser688). These modifications, mediated by kinases 
such as Golgi casein kinase-like kinase, have been reported to influence PCSK9 stability, secretion, and proteolysis protection 
in a cell type-dependent manner, although they are not strictly required for its activity on LDLR degradation. PCSK9 protein 
mediates cholesterol homeostasis by regulating the hepatic cell surface LDLR. Specifically, PCSK9 binds to the epidermal 
growth factor-like repeat A (EGF-A) domain of LDLR, a critical site for this interaction, and subsequently redirects the receptor 
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ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) modulates cholesterol homeostasis by targeting low-density lipoprotein 
receptor (LDLR) for lysosomal degradation. Genetic polymorphisms in PCSK9 can alter its autocatalytic processing, secretion, or 
binding affinity to LDLR. Reduce binding efficiency between PCSK9 and LDLR leads to elevated low-density lipoprotein cholesterol 
(LDL-C) level, thereby promoting atherosclerotic plaque formation and increasing the risk of ischemic stroke. The objective 
of this study was to identify the most functionally significant non-synonymous single-nucleotide polymorphisms (nsSNPs) in 
PCSK9 via an integrated in silico analysis combining functional prediction tools (PROVEAN, SIFT, PolyPhen-2, SNAP2), protein 
stability and disease-association predictors, ligand-binding assessment, and post-translational modification analysis. A total of 
4,979 PCSK9 variants were retrieved from Ensembl GRCh37/hg19, and HGMD. Functional annotation using PROVEAN, SIFT, 
PolyPhen-2, and SNAP2 identified 253 nsSNPs, with PolyPhen-2 predicting the largest subset. Upon filtering through the protein 
stability, disease association, ligand binding, and post-translational modification, five nsSNPs (W156R, H226L, H229R, G337R, 
and G394V) emerged as the most deleterious, with potential to disrupt secondary autocatalytic processing and significantly 
impair LDLR-PCSK9 interactions. These findings highlight novel candidate variants that may serve as diagnostic biomarkers and 
therapeutic targets in dyslipidemia and cardiovascular disease.

Key words: Bioinformatics, low-density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 (PCSK9), 
single nucleotide polymorphisms (SNPs),cardiovascular disease
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to lysosomal degradation via two pathways (Abifadel et al., 2003; Au et al., 2015; Chaudhary et al., 2017). In the external route, 
where PCSK9 binds to LDLR on the cell surface, whereas in the internal route, PCSK9 binds to LDLR in the luminal secretory 
compartment and redirects the receptor to lysosomal degradation (Au et al., 2017).

PCSK9 is one of the three genes implicated in familial hypercholesterolemia through gain-of-function mutations (Chaudhary 
et al., 2017). It was first identified in 2003 by linkage analysis of French families with autosomal dominant hypercholesterolemia 
(ADH) who lacked mutations in LDLR and Apolipoprotein B (APOB). Subsequent sequencing revealed two causative mutations 
in PCSK9 at the ADH locus. Since then, more than 50 gain-of-function mutations in PCSK9 have been reported worldwide, most 
of which cluster in the catalytic and C-terminal domains, impair LDLR recycling, and markedly elevate plasma LDL-C levels. 
PCSK9 encodes neural apoptosis-regulated convertase 1 (NARC-1), a subtilisin-like serine protease that is highly expressed in 
the liver and plays a central role in cholesterol homeostasis (Abifadel et al., 2003). With the increasing number of gain-of-function 
polymorphisms detected in PCSK9, little is known about the effect of nsSNPs in the coding regions of the gene on protein 
stability (Abifadel et al., 2003; Au et al., 2017). Hence, the objective of this study was to determine the functional nsSNPs in the 
PSCK9 gene.

METHODOLOGY
PCSK9 gene variants and protein information

Genomics information (accession numbers NG_009061.1 and NM_174936.3) of PCSK9 was retrieved from the National 
Center for Biotechnology Information (NCBI) (Wheeler et al., 2007). Using transcript ID ENST00000302118.5 as the reference, 
PCSK9 variants were compiled from Ensembl GRCh37/hg19 (Howe et al., 2021), and Human Gene Mutation Database (HGMD) 
(Stenson et al., 2003). Proteomic data containing UniProt ID (Q8NBP7) and amino acid sequence  were retrieved from UniProtKB 
(Boutet et al., 2016). The PCSK9 crystal structure (PDB ID: 2P4E), solved by X-ray diffraction at 1.98 Å resolution (R-work = 
0.200, R-free = 0.250), was obtained from the Protein Data Bank (PDB) (Protein Data Bank, 1971).

Predicting the deleterious impact of nsSNPs 
PCSK9 nsSNPs were subjected to deleterious and damaging effect prediction using the Protein Variation Effect Analyser 

(PROVEAN) (Choi & Chan, 2015) and Screening for Non-Acceptable Polymorphisms (SNAP2) (Bromberg & Rost, 2007). 
Subsequent analyses were performed with Sorting Intolerant from Tolerant (SIFT) (Vaser et al., 2016) and Polymorphism 
Phenotyping v2 (PolyPhen-2) (Adzhubei et ak., 2013). The inputs for PROVEAN, SIFT and PolyPhen-2 were chromosome 
location, wild- or mutant-type allele, while the input for SNAP2 was FASTA amino acid sequence NP_777596.2 of PCSK9 
protein. Moreover, three additional computational tools, i.e. Predicting human Deleterious SNPs in the human genome (PhD-
SNPg) (Capriotti & Fariselli, 2017), Position-Specific Evolutionary Preservation (PANTHER) (Thomas et al., 2003), and MutPred2 
(Pejaver et al., 2017), were employed to evaluate the potential deleterious effects of nsSNPs. For PhD-SNPg, the chromosomal 
positions of the wild-type and mutant amino acids were provided as input (Capriotti & Fariselli, 2017), while the amino acid 
sequences of the nsSNPs were used for MutPred2 analysis (Pejaver et al., 2017). To minimize false-positive predictions, the 
MutPred2 threshold was set at 0.8 (Pejaver et al., 2017). In addition, the analysis incorporated complementary predictions 
obtained from both PhD-SNPg (Capriotti & Fariselli, 2017) and PANTHER (Thomas et al., 2003). Furthermore, the web servers 
and the corresponding cut-off values used for the functional prediction of nsSNPs are detailed in Supplementary Table 1. 

Evolutionary conservation analysis of nsSNPs
The evolutionary conservation of amino acid residues in PCSK9 was evaluated using ConSurf-DB, which provides pre-

calculated conservation profiles for proteins of known PDB structure. Homologous sequences were collected and aligned with 
HMMER and MAFFT, and residue conservation scores were calculated using the Rate4Site algorithm with Bayesian inference, 
accounting for phylogenetic relationships among aligned sequences (Pejaver et al., 2017). The conservation profile was mapped 
onto the PCSK9 crystal structure (PDB ID: 2P4E) to visualize functionally important regions.

nsSNPs on protein stability
Protein stability of the deleterious nsSNPs was predicted using PDB ID 2P4E. The effects of protein stability were predicted 

using  four established computational tools, namely, Cologne University Protein Stability Analysis Tool (CUPSAT) (Parthiban  
et al., 2006), Prediction of Protein Stability Changes due to Single Amino Acid Mutations (ProSMS) (Wang & Sauer, 2010), 
Prediction of Protein Stability Changes for Single Site Mutations from Sequences (MUpro) (Cheng et al., 2006), and DUET with 
a complementary approach of site directed mutator and cutoff mutation scanning matrix (Pires  et al., 2014). The cut-off value of 
0 was used for protein stability prediction (Supplementary Table 1).

Disease-associated nsSNPs 
Disease-associated nsSNPs were predicted using PMut (Ferrer-Costa et al., 2005) and SNPs&GO (Capriotti et al., 2013). 

For PMut batch analysis, the wild-type and mutant amino acids of nsSNPs identified in the human PCSK9 gene were used as 
input (Ferrer-Costa et al., 2005). For SNPs&GO, the corresponding amino acid sequences of the nsSNPs were submitted for 
analysis (Capriotti et al., 2013). Details of the web servers employed for disease-association prediction are provided in Table 1.

Ligand Binding Site 
Ligand binding sites were observed from RaptorXBinding via Deep Learning algorithm (Peng & Xu, 2011), COACH that 

combines the predictions from binding-specific substructure comparison (TM-SITE) and sequence profile alignment (S-SITE) 
algorithms (Yang  et al., 2013), COFACTOR (Zhang et al., 2017a) as well as ATPbind that assembles multiple support vector 
machine models (Hu et al., 2018). The amino acid sequences of PDB ID 2P4E were used as input for the aforementioned web 
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servers. 

Post-Translational Modification Sites 
The sites for post-translational modification (PTM) were predicted from PROSITE (Hulo et al., 2006) and a sequence-based 

predictor ModPred (Pejaver et al., 2014). PTM involved major modifications such as palmitoylation, methylation, O-glycosylation 
and N-glycosylation. Palmitoylation sites were predicted using CSS-Palm (Zhou et al., 2006). Meanwhile, the methylation sites 
were predicted using GPS-MSP Methyl-group Specific Predictor 1.0 (Deng et al., 2017).  N- and O-linked glycosylation sites 
were predicted using the NetOGlyc 4.0 server (Zhang et al., 2024) to evaluate potential post-translational modifications. To 
ensure predictive reliability, only residues with scores above the default confidence threshold (>0.5) were retained. Consistent 
with the ligand-binding site analysis, amino acid sequences corresponding to PDB ID 2P4E served as input. The predicted 
glycosylation sites were subsequently examined in relation to the five novel nsSNPs. All identified glycosylation residues were 
positioned more than 5 Å from the nsSNP locations, suggesting the absence of direct structural overlap or steric interference.

RESULTS and DISCUSSION
Functional characterisation of nsSNPs 

A total of 4979 known variants encompassing the 5’ untranslated regions (UTR) and 3’UTR of the PCSK9 gene, as well 
as its intron and exon regions, were retrieved from Ensembl GRCh37/hg19 and HGMD. Retrieved variants were analysed 
with PROVEAN, SNAP2, SIFT and PolyPhen-2 to obtain nsSNPs with deleterious and damaging effects. Upon filtering, the 
nsSNPs from PROVEAN (n=161), SIFT (n=252), PolyPhen-2 (n=253) and SNAP2 (n=91) were compared (Figure 1). Likewise, 
PhD-SNPg, PANTHER, and MutPred2 classified 97, 61, and 76 nsSNPs, respectively, as pathogenic. Based on the results of 
functional annotation, there were 104 deleterious nsSNPs in PROVEAN, 32 highly damaging and 72 damaging nsSNPs in SIFT, 
73 highly deleterious and 29 deleterious nsSNPs in PolyPhen-2, and 91 nsSNPs in SNAP2 shown to affect the PCSK9 gene 
(Figure 1). Therefore, a total of 104 deleterious nsSNPs were used in the subsequent analyses. 

         *Based on the highest number of nsSNPs obtained from the web servers.

Fig. 1. Flow chart of the bioinformatics analysis of the PCSK9 gene.

Evolutionary conservation analysis of nsSNPs
ConSurf analysis was performed to assess the evolutionary conservation of residues affected by the most significant 

nsSNPs in PCSK9. Five variants (W156R, H226L, H229R, G337R, and G394V) corresponding to dbSNP entries rs1031725741, 
rs762279506, rs1004968088, rs865848494, and rs376066497 were mapped onto the PCSK9 structure (PDB ID: 2P4E). All 
five residues showed negative conservation scores (ranging from -0.048 to -0.112), indicating evolutionary conservation. These 
findings suggest that substitutions at these positions may disrupt functionally important regions of PCSK9, consistent with their 
predicted pathogenic effects.
Protein stability, disease association, ligand binding, and post-translational modification of the nsSNPs 
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It has been shown that 12 exons of the PCSK9 gene were translated to 692 amino acids, the P and A domains of the PCSK9 

protein. Of which, protein stability analysis revealed that nsSNPs were categorised into destabilising, stabilising or unknown 
effect (Figure 1). Likewise, the disease-associated nsSNPs predicted from PMut,  and SNPs&GO, were either categorised as 
pathogenic or neutral (Figure 1). 

After filtering 97 nsSNPs, ligand-binding predictions indicated that PCSK9 interacts with calcium, N-acetyl-D-glucosamine, 
angiotensin-converting enzyme, adenosine triphosphate (ATP), potassium, sulfate ions, magnesium, and 2′-deoxycytidine-5′-
triphosphate (dCTP) at distinct residues (Figure 2). The confidence for calcium, N-acetyl-D-glucosamine, angiotensin-converting 
enzyme, and ATP interactions was high, whereas predictions for potassium, sulfate, magnesium (confidence 0.05 - 0.22), and 
dCTP (confidence 0.01 - 0.02) were less robust (Supplementary Table 1). Mapping these features revealed that ATP-binding 
pockets localize to residues 250 - 400, while cation- and nucleotide-binding sites are enriched in the N-terminal and central 
domains (Figure 2). Post-translational modification predictions identified consensus motifs for phosphorylation by protein kinase 
C and casein kinase II, as well as for N- and O-glycosylation and palmitoylation (Figure 2), suggesting strong regulatory control. 
Additional modifications, including sulfation, ADP-ribosylation, methylation, amidation, N-myristoylation, and multiple proteolytic 
cleavage sites, were also detected, albeit with less consistent support across algorithms (Figure 2, Supplementary Table 1).

When mapped onto the 686-residue sequence, distinct spatial patterns emerged. The N-terminal domain (residues 1 - 108) 
is enriched in calcium- and magnesium-binding motifs, together with predicted dCTP interactions (Figure 2), implicating it in 
cation coordination and nucleotide stabilization. The central domain (residues 218 - 400) harbors ATP-binding pockets (BS01 
and BS02) and angiotensin-converting enzyme interaction sites (Figure 2), consistent with its catalytic role. By contrast, the 
C-terminal domain (residues 400 - 686) contains relatively few ligand-binding sites but a higher density of PTMs, including ADP-
ribosylation, methylation, glycosylation, and palmitoylation (Figure 2), suggesting predominant roles in regulation, localization, 
and membrane association. 

The PTM landscape emphasizes the regulatory complexity of PCSK9. Phosphorylation motifs distributed across the 
sequence provide multiple points for signal-dependent modulation, while lipid modifications and glycosylation may contribute 
to stability, trafficking, and membrane interactions. Moreover, the abundance of proteolytic cleavage sites suggests potential 
processing into smaller functional fragments (Figure 2). 

By which, these findings indicate that ligand-binding motifs are concentrated in the N-terminal and catalytic core domains, 
whereas PTMs are more broadly distributed, particularly in the C-terminal region, where they likely fine-tune activity and 
interactions. This spatial partitioning highlights how PCSK9 integrates ligand-binding capacity with multilayered regulatory 
mechanisms to support its diverse biological functions.

The most significant nsSNPs of the PCSK9 gene
Based on the results obtained from the 14 webservers, the top 5% of the pathogenic nsSNPs (e.g. W156R, H226L, H229R, 

G337R and G394V), were chosen as the most significant nsSNPs for PCSK9 gene (Table 1). Table 1 shows the genomic location, 
functional characterisation, protein stability, disease association, and conservation score of the nsSNPs. Of which, W156R and 
G394V were located in the coil, H226L and H229R were situated in the alpha-helix, and G337R was in the beta-sheet.

Impact of novel PCSK9 mutations on protein structure and function
Each novel mutation was mapped onto the three-dimensional structure of PCSK9 (PDB ID: 2P4E) to assess its potential 

structural and functional consequences. Structural analyses focused on determining whether the variants were positioned near 
functionally critical regions, including catalytic residues, domain interfaces, and ligand-binding pockets, informed by ligand-
binding site predictions and PTM annotations. The analysis indicated that W156R resides within the prodomain, adjacent to 
calcium-binding motifs, where it could interfere with cation coordination and compromise structural stability. Variants H226L and 
H229R are clustered within the catalytic core, in proximity to the ATP-binding site, suggesting potential effects on enzymatic 
activity. G337R is located within the catalytic domain, where the substitution of glycine with a bulkier arginine side chain may 
introduce steric hindrance within the substrate-binding cleft. Finally, G394V lies near the C-terminal domain interface, where 
it could disrupt interdomain communication and allosteric regulation. Collectively, these structural insights suggest that the 
identified mutations may impair PCSK9 function by destabilizing the protein, altering ligand recognition, or reducing catalytic 
efficiency.

A wide variety of computational tools and/or webservers were employed to understand the impact of PCSK9 nsSNPs at the 
molecular level. As such, the results of 14 webservers indicated that the most significant nsSNPs affecting protein stability and 
disease association were W156R, H226L, H229R, G337R and G394V. The web servers are designed from various algorithms, 
by which the combinatory analysis can provide a more reliable prediction. For comparison, multiple computational tools were 
used in each analysis before drawing a solid conclusion. For example, PROVEAN (Choi et al., 2015), SIFT (Vaser et al., 2016), 
PolyPhen-2 (Adzhubei et al., 2013), and SNAP2 (Bromberg et al., 2007) were used to predict the deleterious nsSNPs within 
the PCSK9 gene. PROVEAN uses sequence homology to generate the delta alignment score, which is not as specific as SIFT 
(Vaser et al., 2016), Polyphen-2 Arial and SNAP2 (Bromberg et al., 2007). This web server includes all types of mutations such 
as insertion, deletion, frameshift and substitution of all the synonymous SNPs and nsSNPs (Choi et al., 2015). The nsSNPs 
determined from PROVEAN (Choi et al., 2015) were compared with SIFT (Vaser et al., 2016), Polyphen-2 Arial and SNAP2 
(Bromberg et al., 2007), as the latter only considered the coding SNPs. Thus, W156R, H226L, H229R, G337R, and G394V were 
determined as the most significant nsSNPs in the PCSK9 gene.  

Novel findings of this study included that both the H226L and W156R tended to affect the interaction between the LDLR 
EGF_A domain and the PCSK9 protein. These two mutations might serve as the main key players in reducing ischemic stroke 
and cardiovascular risks. EGF_A is located within the LDLR protein, which serves as the protein binding site for PCSK9 during the 
regulation of cholesterol metabolism (Chorba et al., 2018). It has been suggested that LDLR degradation is restricted following 
the presence of H226L and W156R mutations in the PCSK9 protein. Reduced LDLR degradation efficiency may enhance LDL-C 
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removal from the bloodstream. Thus, it decreases atherosclerotic plaque formation and ischemic stroke risk (Au et al., 2015). 

Table 1. The most significant nsSNPs for PCSK9 gene
Prediction Webserver nsSNPs

W156R
g.55512262

T>C

H226L
g.55518342

A>T

H229R
g.55518351

A>G

G337R
g.55523016

G>A

G394V
g.55523709

G>T
rs1031725741 rs762279506 rs1004968088 rs865848494 rs376066497

nsSNPs PROVEAN
(Choi et al., 2015) -12.560 -11.000 -8.000 -7.530 -8.600

SIFT
(Vaser et al., 2016) 0.000 0.000 0.000 0.001 0.004

PolyPhen-2
(Adzhubei et al., 2013) 1.000 1.000 1.000 1.000 1.000

SNAP2
(Bromberg et al., 2007) 84.000 91.000 81.000 89.000 89.000

‍ PhD-SNPg
(Capriotti & Fariselli, 2017) 0.998 0.994 0.964 0.991 0.992

‍ PANTHER
(Thomas et al., 2003) 0.701 0.994 0.504 0.631 0.682

‍ MutPred2
(Pejaver et al., 2017) 0.937 0.920 0.810 0.867 0.896

Protein 
stability

CUPSAT
(Parthiban et al., 2006) -4.590 0.130 -3.430 -2.270 7.000

ProSMS
(Wang & Sauer, 2010) -2.120 -0.210 -1.500 -0.840 -0.310

MUpro
(Cheng et al., 2006) -0.929 -0.176 -0.637 -0.152 -0.448

DUET
(Pires et al., 2014) -0.959 -0.455 -2.002 -1.031 0.093

Disease-
association

PMut
(Ferrer-Costa et al., 2005) 0.806 0.878 0.789 0.878 0.878

SNPs&GO
(Capriotti et al., 2013) 0.708 0.781 0.643 0.794 0.779

Conservation 
score

Consurf-DB (Pejaver et al., 
2017) -0.048 -0.084 -0.112 -0.060 -0.060

#Variants were classified as deleterious/damaging according to the recommended thresholds for each prediction tool. †Variants exceeding the threshold values were 
considered deleterious or pathogenic; those below were classified as neutral/benign.$All outputs were aggregated and re-evaluated using our in-house method, 
which integrates multiple analyses beyond receiver operating characteristic (ROC). To increase confidence, variants consistently predicted as deleterious/damaging 
across several tools were prioritized for downstream analyses.

H226 is one of the serine protease catalytic triads that are located at the active site of the PCSK9 protein (Figure 3). Catalytic 
triad encompasses a set of three amino acids with acidic-basic-polar side chains. Our results indicate that the catalytic triads 
of PCSK9 protein, namely, S386 (polar), H226 (basic) and D186 (acidic), are potent for its protein maturation. Specifically, 
H226 is involved in the intramolecular cleavage of the PCSK9 protein. Apart from serving as the calcium ion binding site during 
autocatalytic processing, H226 also forms a hydrogen bond with Q152 residues at the secondary autocatalytic cleavage site 
(Cameron et al., 2008). Experimental studies have shown that substituting histidine at position 226 with leucine (H226L) impairs 
the calcium-dependent autocatalytic processing of PCSK9 in the endoplasmic reticulum, thereby blocking protein maturation 
and yielding a non-functional product (Chorba et al., 2018). This finding is consistent with our in silico analysis, which likewise 
identified H226 as a functionally critical residue, thereby reinforcing the reliability of our computational approach for detecting 
deleterious nsSNPs. Since the autocleavage processing of PCSK9 protein depends on the the integrity of its catalytic triad,  the 
substitution of a basic amino acids (histidine) with a non-polar amino acids (leucine) is expected to impair the catalytic triad’s, 
ultimately disrupting the protein’s autocatalytic processing (Figure 4). An impaired PCSK9 protein reduces LDLR degradation, 
and thus enhances plasma LDL-C removal from the bloodstream. Such a phenomenon decreases the risks of hyperlipidemia, 
plaque formation, ischemic stroke occurrence and cardiovascular diseases (Au et al., 2015).
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Fig. 2.  Ligand binding sites and post translational modification sites.
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Fig. 3. Location of the selected nsSNPs in the catalytic domain of PCSK9.

Fig. 4. Hydrogen bond interactions of H226 and Q152 residues.
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H229R mutation is located within the same alpha-helix as similar to H226L [9], which may introduce torsion strain or steric 

clashes that cause the conformational change of an alpha-helix. Given its proximity to H226, the H229R mutation could also 
disrupt local hydrogen-bonding networks within the α-helix (Benjannet et al., 2012). Such structural perturbations may impair 
the hydrogen bond formation between H226 and Q152 residues, which further disrupts the autocatalytic cleavage of PCSK9 
(Benjannet et al., 2012). Computational validation using FoldX is needed to further evaluate the potential impact of H229R on 
hydrogen bond formation and α-helix stability.

The present study reveals that the W156 residue, located within the P′ helix (residues 153–162, SIPWNLERIT), contributes 
to the autocatalytic cleavage site (VFAQ152′SIP) of PCSK9 (Weider et al., 2016). Structural studies have demonstrated that this 
region contains a highly conserved WNLxRI motif (residues 156–161), which is essential for stabilizing the helical conformation 
necessary for exposure of the EGF-A binding site [38,39]. Previous genetic analyses suggested that the W156R substitution 
is likely deleterious and pathogenic (Peloso et al., 2016), although no direct experimental investigation of this variant has been 
reported to date. Our in silico analysis further predicts that substituting tryptophan with arginine at this position may destabilize 
the P′ helix, thereby perturbing the presentation of the EGF-A binding site and reducing PCSK9-LDLR interaction. These findings 
should be interpreted as computational predictions supported by structural evidence (Zhang et al., 2017b), and will require 
experimental validation to confirm their functional consequences.

Nonetheless, there remains a lack of studies reporting on the novel mutation (i.e. G337R) in PCSK9. Based on PROSITE 
predictions, G337 may represent as a potential site for N-myristoylation, although this remains to be experimentally validated. 
N-myristoylation is a type of lipid modification that involves a covalent attachment of the myristoyl group to the alpha-amino 
group of N-terminal glycine residues via an amide bond (Udenwobele et al., 2017). Myristoylation at the histone tail enhances the 
formation of heterochromatin that suppresses PCKS9 transcription activity. According to the PROSITE consensus motif (Hulo 
et al., 2006), the G337R substitution is predicted to interfere with the canonical recognition site for N-myristoylation, thereby 
reducing the likelihood of this modification in PCSK9. This prediction is based on the sequence requirements defined in the 
PROSITE documentation (PDOC00008) and is consistent with experimental studies of N-myristoylation (Glaser et al., 1988). 
Specifically, an N-terminal glycine is considered indispensable for recognition by N-myristoyltransferase, whereas replacement 
with a charged residue such as arginine is generally incompatible with enzymatic recognition. Although no direct experimental 
data are currently available for the PCSK9 G337R variant, this inference is supported by the well-established substrate specificity 
of the N-myristoylation machinery (Glaser et al., 1988). Such a phenomenon prevents the formation of bulky PCSK9 in histone 
modification and enhances its protein activity, leading to hypercholesterolemia. 

In addition, this study highlights the G394V substitution in PCSK9, which is reported in ClinVar (Allele ID: 907416) as a variant 
of uncertain significance in relation to familial hypercholesterolemia. Although no experimental studies have yet investigated its 
functional consequences, its location raises the possibility that it could influence splicing efficiency and generate alternative 
isoforms. Further work will be required to validate this prediction. 

Nevertheless, complete degradation mechanism between PCSK9 and LDLR may not be supportive to discuss other potential 
PCSK9 nsSNPs (i.e. V81E, R160W, G227D, R251C, P327Q, C358Y, T385I and C654R), in which the literature is relatively 
scarce. For example, Supplementary Table 2 shows that the aforementioned nsSNPs can affect the EGF_A domain of the 
PCSK9 protein; however, most of the literature available to date has been focused on the common SNPs of PCSK9 (i.e. S127R, 
R46L, Q152H, and D374Y). Hence, future studies incorporating molecular docking, structural modeling and molecular dynamics 
simulations, together with visualization tools such as PyMol and iCn3D, are warranted to elucidate the three-dimensional 
structural differences between wild-type and mutant-type PCSK9 protein.

CONCLUSION
The most significant nsSNPs W156R, H226L, H229R, G337R and G394V may disrupt the second autocatalytic processing of 
PCSK9 protein and interrupt the bonding interaction between LDLR and PCSK9 proteins significantly, thus serving as a new 
target for diagnostic biomarkers and drug development. 
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