GROWTH, CARBOHYDRATE PRODUCTIVITY AND GROWTH KINETIC STUDY OF Halochlorella rubescens CULTIVATED UNDER CO2-RICH CONDITIONS

https://doi.org/10.55230/mabjournal.v49i1.1647

Authors

  • KEAN MENG TAN Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
  • MOHD ASYRAF KASSIM Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

Keywords:

Microalgal biomass, pH, CO2 bio-fixation, biochemical compositions, FTIR, kinetic modelling

Abstract

This study was parametrically established to investigate the effect of different initial pH cultivation medium from pH 4.00 to pH 10.00 and CO2 concentration from 0.04% to 25% (v/v) on the growth and carbohydrate content of Halochlorella rubescens. Changes in biochemical compositions were also analysed using Fourier-transform infrared spectroscopy (FTIR). The maximum concentration of biomass and the productivity carbohydrate were 0.49 ± 0.01 g/L and 22.42 ± 0.03 mg/L.d respectively, when pH 10.00 and 5% (v/v) CO2 concentration were used for cultivation. The FTIR analysis revealed obvious changes in the chemical functional groups for the1200-900 cm-1, 1655 cm-1 and 2850 cm-1 bands, which represent carbohydrate, protein and lipid in microalgal biomass under different cultivation conditions. At the completion of this study, two kinetic growth models, Logistic and Gompertz were evaluated for microalgae growth at elevated condition. The kinetic model analysis for Halochlorella rubescens growth at high CO2 condition fit well with the Gompertz equation with R2 value of 0.9977. The data acquired from this research was helpful for predicting the growth characteristics of microalgae in a CO2-rich medium and could act as an essential platform for the production of chemicals and biofuels

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Al-Safaar, A.T., Al-Rubiaee, G.H. & Salman, S.K. 2016. Effect of pH condition on the growth and lipid content of microalgae Chlorella vulgaris & Chroococcus minor. Journal of Scientific & Engineering Research, 7(11): 1139.

Béchet, Q., Laviale, M., Arsapin, N., Bonnefond, H. & Bernard, O. 2017. Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnology for Biofuels, 10(1): 136. https://doi.org/10.1186/s13068-017-0823-z DOI: https://doi.org/10.1186/s13068-017-0823-z

Benedetti, M., Vecchi, V., Barera, S. & Dall'Osto, L. 2018. Biomass from microalgae: the potential of domestication towards sustainable bio- factories. Microbial Cell Factories, 17(1): 173. https://doi.org/10.1186/s12934-018-1019-3 DOI: https://doi.org/10.1186/s12934-018-1019-3

Blinová, L., Bartošová, A. & Gerulová, K. 2015. Cultivation of microalgae (Chlorella vulgaris) for biodiesel production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 23(36): 87-95. https://doi.org/10.1515/rput-2015-0010 DOI: https://doi.org/10.1515/rput-2015-0010

Caporgno, M.P. & Mathys, A. 2018. Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5: 58. https://doi.org/10.3389/fnut.2018.00058 DOI: https://doi.org/10.3389/fnut.2018.00058

Chen, C.Y., Zhao, X.Q., Yen, H.W., Ho, S.H., Cheng, C.L., Lee, D.J., Bai, F.W. & Chang, J.S. 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78: 1-10. https://doi.org/10.1016/j.bej.2013.03.006 DOI: https://doi.org/10.1016/j.bej.2013.03.006

Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. & Das, K.C. 2009. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International Journal of Molecular Science, 10(2): 518-532. https://doi.org/10.3390/ijms10020518 DOI: https://doi.org/10.3390/ijms10020518

Cortés, A.A., Sánchez-Fortún, S., García, M. & Bartolomé, M.C. 2018. Effects of pH on the growth rate exhibited of the wild-type and Cd-resistant Dictyosphaerium chlorelloides strains. Limnetica, 37(2): 229-238. https://doi.org/10.23818/limn.37.19 DOI: https://doi.org/10.23818/limn.37.19

Darvehei, P., Bahri, P.A. & Moheimani, N.R. 2018. Model development for the growth of micro- algae: a review. Renewable and Sustainable Energy Reviews, 97: 233-258. https://doi.org/10.1016/j.rser.2018.08.027 DOI: https://doi.org/10.1016/j.rser.2018.08.027

Driver, T., Bajhaiya, A.K., Allwood, J.W., Goodacre, R., Pittman, J.K. & Dean, A.P. 2015. Metabolic responses of eukaryotic microalgae to environmental stress limit the ability of FT-IR spectroscopy for species identification. Algal Research, 11: 148-155. https://doi.org/10.1016/j.algal.2015.06.009 DOI: https://doi.org/10.1016/j.algal.2015.06.009

Dubinsky, Z., Falkowski, P.G. & Wyman, K. 1986. Light harvesting and utilization by phyto- plankton. Plant and Cell Physiology, 27(7): 1335-1349. https://doi.org/10.1093/oxfordjournals.pcp.a077232 DOI: https://doi.org/10.1093/oxfordjournals.pcp.a077232

Eroglu, E., Eggers, P.K., Winslade, M., Smith, S.M. & Raston, C.L. 2013. Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chemistry, 15(11): 3155-3159. https://doi.org/10.1039/c3gc41291a DOI: https://doi.org/10.1039/c3gc41291a

Fan, J., Ning, K., Zeng, X., Luo, Y., Wang, D., Hu, J., Li, J., Xu, H., Huang, J., Wan, M., Wang, W., Zhang, D., Shen, G., Run, C., Liao, J., Fang, L., Huang, S., Jing, X., Su, X., Wang, A., Bai, L., H, Z.M., Xu, J. & Li, Y. 2015. Genomic foundation of starch-to-lipid switch in oleaginous Chlorella spp. Plant Physiology, 169(4): 2444-2461. https://doi.org/10.1104/pp.15.01174 DOI: https://doi.org/10.1104/pp.15.01174

Filali, R., Tebbani, S., Dumur, D., Isambert, A., Pareau, D. & Lopes, F. 2011. Growth modeling of the green microalga Chlorella vulgaris in an air-lift photobioreactor. IFAC Proceedings Volumes, 44(1): 10603-10608. https://doi.org/10.3182/20110828-6-IT-1002.01955 DOI: https://doi.org/10.3182/20110828-6-IT-1002.01955

Gong, J. & You, F. 2014. Value-added chemicals from microalgae: greener, more economical, or both? ACS Sustainable Chemistry & Engineering, 3(1): 82-96. https://doi.org/10.1021/sc500683w DOI: https://doi.org/10.1021/sc500683w

Han, F., Huang, J., Li, Y., Wang, W., Wan, M., Shen, G. & Wang, J. 2013. Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2. Bioresource Technology, 136: 418-424. https://doi.org/10.1016/j.biortech.2013.03.017 DOI: https://doi.org/10.1016/j.biortech.2013.03.017

Ho, S.H., Chen, C.Y. & Chang, J.S. 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113: 244-252. https://doi.org/10.1016/j.biortech.2011.11.133 DOI: https://doi.org/10.1016/j.biortech.2011.11.133

Ji, M.K., Yun, H.S., Hwang, J.H., Salama, E.S., Jeon, B.H. & Choi, J. 2017. Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production. Environmental Technology, 38(16): 2085-2092. https://doi.org/10.1080/09593330.2016.1246145 DOI: https://doi.org/10.1080/09593330.2016.1246145

Kassim, M.A., Rashid, M.A. & Halim, R. 2017. Towards biorefinery production of microalgal biofuels and bioproducts: production of acetic acid from the fermentation of Chlorella sp. and Tetraselmis suecica hydrolysates. Green and Sustainable Chemistry, 7(2): 152-171. https://doi.org/10.4236/gsc.2017.72012 DOI: https://doi.org/10.4236/gsc.2017.72012

Khairy, H.M., Shaltout, N.A., El-Naggar, M.F. & El- Naggar, N.A. 2014. Impact of elevated CO2 concentrations on the growth and ultrastructure of non-calcifying marine diatom (Chaetoceros gracilis F. Schütt). The Egyptian Journal of Aquatic Research, 40(3): 243-250. https://doi.org/10.1016/j.ejar.2014.08.002 DOI: https://doi.org/10.1016/j.ejar.2014.08.002

Kroumov, A.D., Módenes, A.N., Trigueros, D.E.G., Espinoza-Quiñones, F.R., Borba, C.E., Scheufele, F.B. & Hinterholz, C.L. 2016. A systems approach for CO2 fixation from flue gas by microalgae - Theory review. Process Bio- chemistry, 51(11): 1817-1832. https://doi.org/10.1016/j.procbio.2016.05.019 DOI: https://doi.org/10.1016/j.procbio.2016.05.019

Lam, M.K., Lee, K.T., Khoo, C.G., Uemura, Y. & Lim, J.W. 2016. Growth kinetic study of Chlorella vulgaris using lab-scale and pilot-scale photobioreactor: effect of CO2 concentration. Journal of Engineering and Science Techno- logy, 7: 73-87.

Lammers, P.J., Huesemann, M., Boeing, W., Anderson, D.B., Arnold, R.G., Bai, X., Bhole, M., Brhanavan, Y., Brown, L. & Brown, J. 2017. Review of the cultivation program within the national alliance for advanced biofuels and bioproducts. Algal Research, 22: 166-186. https://doi.org/10.1016/j.algal.2016.11.021 DOI: https://doi.org/10.1016/j.algal.2016.11.021

Last, G.V. & Schmick, M.T. 2011. Identification and selection of major carbon dioxide stream compositions. United State Department of Energy, 1-19. https://doi.org/10.2172/1019211 DOI: https://doi.org/10.2172/1019211

Lee, E., Jalalizadeh, M. & Zhang, Q. 2015. Growth kinetic models for microalgae cultivation: A review. Algal Research, 12: 497-512. https://doi.org/10.1016/j.algal.2015.10.004 DOI: https://doi.org/10.1016/j.algal.2015.10.004

Li, T., Xu, J., Wu, H., Jiang, P., Chen, Z. & Xiang, W. 2019. Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Marine drugs, 17(2): 124. https://doi.org/10.3390/md17020124 DOI: https://doi.org/10.3390/md17020124

Lise, A., Per, M. & Hansen, J. 2007. Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth. Marine Biology Research, 3(3): 134-144. https://doi.org/10.1080/17451000701320556 DOI: https://doi.org/10.1080/17451000701320556

Lu, L., Yang, G., Zhu, B. & Pan, K. 2017. A comparative study on three quantitating methods of microalgal biomass. Indian Journal of Geo Marine Sciences, 46(11): 2265-2272.

Lv, J.M., Cheng, L.H., Xu, X.H., Zhang, L. & Chen, H.L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology, 101(17): 6797-6804. https://doi.org/10.1016/j.biortech.2010.03.120 DOI: https://doi.org/10.1016/j.biortech.2010.03.120

Moroney, J.V. & Ynalvez, R.A. 2007. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryotic Cell, 6(8): 1251-1259. https://doi.org/10.1128/EC.00064-07 DOI: https://doi.org/10.1128/EC.00064-07

Mousavi, S., Najafpour, G.D. & Mohammadi, M. 2018. CO2 bio-fixation and biofuel production in an airlift photobioreactor by an isolated strain of microalgae Coelastrum sp. SM under high CO2 concentrations. Environmental Science and Pollution Research, 25(30): 30139-30150. https://doi.org/10.1007/s11356-018-3037-4 DOI: https://doi.org/10.1007/s11356-018-3037-4

Murdock, J.N. & Wetzel, D.L. 2009. FT-IR microspectroscopy enhances biological and ecological analysis of algae. Applied Spectroscopy Reviews, 44(4): 335-361. https://doi.org/10.1080/05704920902907440 DOI: https://doi.org/10.1080/05704920902907440

Mussgnug, J.H., Klassen, V., Schlüter, A. & Kruse, O. 2010. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1): 51-56. https://doi.org/10.1016/j.jbiotec.2010.07.030 DOI: https://doi.org/10.1016/j.jbiotec.2010.07.030

Nielsen, S.S. 2010. Phenol-sulfuric acid method for total carbohydrates. Food Analysis Laboratory Manual, 47-53. https://doi.org/10.1007/978-1-4419-1463-7_6 DOI: https://doi.org/10.1007/978-1-4419-1463-7_6

Paine, C., Marthews, T.R., Vogt, D.R., Purves, D., Rees, M., Hector, A. & Turnbull, L.A. 2012. How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution, 3(2): 245- 256. https://doi.org/10.1111/j.2041-210X.2011.00155.x DOI: https://doi.org/10.1111/j.2041-210X.2011.00155.x

Pires, J., Alvim-Ferraz, M., Martins, F. & Simões, M. 2012. Carbon dioxide capture from flue gases using microalgae: engineering aspects and bio- refinery concept. Renewable and Sustainable Energy Reviews, 16(5): 3043-3053. https://doi.org/10.1016/j.rser.2012.02.055 DOI: https://doi.org/10.1016/j.rser.2012.02.055

Posadas, E., del Mar Morales, M., Gomez, C., Acién, F.G. & Muñoz, R. 2015. Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chemical Engineering Journal, 265: 239-248. https://doi.org/10.1016/j.cej.2014.12.059 DOI: https://doi.org/10.1016/j.cej.2014.12.059

Praveen, K., Abinandan, S., Natarajan, R. & Kavitha, M. 2018. Biochemical responses from biomass of isolated Chlorella sp., under different cultivation modes: non-linear modelling of growth kinetics. Brazilian Journal of Chemical Engineering, 35(2): 489-496. https://doi.org/10.1590/0104-6632.20180352s20170188 DOI: https://doi.org/10.1590/0104-6632.20180352s20170188

Qiu, R., Gao, S., Lopez, P.A. & Ogden, K.L. 2017. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 28: 192-199. https://doi.org/10.1016/j.algal.2017.11.004 DOI: https://doi.org/10.1016/j.algal.2017.11.004

Rosenberg, J.N., Mathias, A., Korth, K., Betenbaugh, M.J. & Oyler, G.A. 2011. Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibility evaluation. Biomass and Bioenergy, 35(9): 3865-3876. https://doi.org/10.1016/j.biombioe.2011.05.014 DOI: https://doi.org/10.1016/j.biombioe.2011.05.014

Sahoo, D., Elangbam, G. & Devi, S.S. 2012. Using algae for carbon dioxide capture and bio-fuel production to combat climate change. Journal of the Phycological Society, 42(1): 32-38.

Salih, F.M. 2011. Microalgae tolerance to high concentrations of carbon dioxide: A review. Journal of Environmental Protection, 2(05): 648. https://doi.org/10.4236/jep.2011.25074 DOI: https://doi.org/10.4236/jep.2011.25074

Tang, D., Han, W., Li, P., Miao, X. & Zhong, J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3): 3071-3076. https://doi.org/10.1016/j.biortech.2010.10.047 DOI: https://doi.org/10.1016/j.biortech.2010.10.047

Taraldsvik, M. & Myklestad, S.M. 2000. The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. European Journal of Phycology, 35(2): 189-194. https://doi.org/10.1080/09670260010001735781 DOI: https://doi.org/10.1080/09670260010001735781

Teoh, M.L., Wong, C.Y. & Phang, S.M. 2013. Effect of increased CO2 and temperature on growth, photosynthesis and lipid content of tropical algae. Malaysian Journal of Science, 32: 85-94. https://doi.org/10.22452/mjs.vol32no3.8 DOI: https://doi.org/10.22452/mjs.vol32no3.8

Vaquero, I., Vázquez, M., Ruiz-Domínguez, M. & Vílchez, C. 2014. Enhanced production of a lutein-rich acidic environment microalga. Journal of Applied Microbiology, 116(4): 839-850. https://doi.org/10.1111/jam.12428 DOI: https://doi.org/10.1111/jam.12428

Vidyashankar, S., Deviprasad, K., Chauhan, V., Ravishankar, G. & Sarada, R. 2013. Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions. Bioresource Technology, 144: 28-37. https://doi.org/10.1016/j.biortech.2013.06.054 DOI: https://doi.org/10.1016/j.biortech.2013.06.054

Widjaja, A. 2010. Lipid production from microalgae as a promising candidate for biodiesel pro- duction. Makara Journal of Technology, 13(1): 47-51. https://doi.org/10.7454/mst.v13i1.496 DOI: https://doi.org/10.7454/mst.v13i1.496

Yang, J., Rasa, E., Tantayotai, P., Scow, K.M., Yuan, H. & Hristova, K.R. 2011. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresource Techno- logy, 102(3): 3077-3082. https://doi.org/10.1016/j.biortech.2010.10.049 DOI: https://doi.org/10.1016/j.biortech.2010.10.049

Yang, Y. & Gao, K. 2003. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). Journal of Applied Phycology, 15(5): 379-389. https://doi.org/10.1023/A:1026021021774 DOI: https://doi.org/10.1023/A:1026021021774

Ying, K., D, J.G. & Zimmerman, W.B. 2014. Effects of CO2 and pH on growth of the microalga Dunaliella salina. Journal of Microbial & Biochemical Technology, 6(3): 167-173. https://doi.org/10.4172/1948-5948.1000138 DOI: https://doi.org/10.4172/1948-5948.1000138

Yu, X.J., Huang, C.Y., Chen, H., Wang, D.S., Chen, J.L., Li, H.J., Liu, X.Y., Wang, Z., Sun, J. & Wang, Z.P. 2019. High-throughput Biochemical fingerprinting of oleaginous Aurantiochytrium sp. strains by fourier transform infrared spectroscopy (FT-IR) for lipid and carbohydrate productions. Molecules, 24(8): 1593. https://doi.org/10.3390/molecules24081593 DOI: https://doi.org/10.3390/molecules24081593

Zeng, X., Danquah, M.K., Zhang, S., Zhang, X., Wu, M., Chen, X.D., Ng, I.S., Jing, K. & Lu, Y. 2012. Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chemical Engineering Journal, 183: 192-197. https://doi.org/10.1016/j.cej.2011.12.062 DOI: https://doi.org/10.1016/j.cej.2011.12.062

Zhang, D., Dechatiwongse, P., del Rio-Chanona, E., Maitland, G., Hellgardt, K. & Vassiliadis, V.S. 2015. Modelling of light and temperature influences on cyanobacterial growth and biohydrogen production. Algal Research, 9: 263-274. https://doi.org/10.1016/j.algal.2015.03.015 DOI: https://doi.org/10.1016/j.algal.2015.03.015

Published

30-06-2020

How to Cite

TAN, K. M., & KASSIM, M. A. (2020). GROWTH, CARBOHYDRATE PRODUCTIVITY AND GROWTH KINETIC STUDY OF Halochlorella rubescens CULTIVATED UNDER CO2-RICH CONDITIONS. Malaysian Applied Biology, 49(1), 1–11. https://doi.org/10.55230/mabjournal.v49i1.1647

Issue

Section

Research Articles