• KEAN MENG TAN Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
  • MOHD ASYRAF KASSIM Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia


Microalgal biomass, pH, CO2 bio-fixation, biochemical compositions, FTIR, kinetic modelling


This study was parametrically established to investigate the effect of different initial pH cultivation medium from pH 4.00 to pH 10.00 and CO2 concentration from 0.04% to 25% (v/v) on the growth and carbohydrate content of Halochlorella rubescens. Changes in biochemical compositions were also analysed using Fourier-transform infrared spectroscopy (FTIR). The maximum concentration of biomass and the productivity carbohydrate were 0.49 ± 0.01 g/L and 22.42 ± 0.03 mg/L.d respectively, when pH 10.00 and 5% (v/v) CO2 concentration were used for cultivation. The FTIR analysis revealed obvious changes in the chemical functional groups for the1200-900 cm-1, 1655 cm-1 and 2850 cm-1 bands, which represent carbohydrate, protein and lipid in microalgal biomass under different cultivation conditions. At the completion of this study, two kinetic growth models, Logistic and Gompertz were evaluated for microalgae growth at elevated condition. The kinetic model analysis for Halochlorella rubescens growth at high CO2 condition fit well with the Gompertz equation with R2 value of 0.9977. The data acquired from this research was helpful for predicting the growth characteristics of microalgae in a CO2-rich medium and could act as an essential platform for the production of chemicals and biofuels


Download data is not yet available.


Metrics Loading ...


Al-Safaar, A.T., Al-Rubiaee, G.H. & Salman, S.K. 2016. Effect of pH condition on the growth and lipid content of microalgae Chlorella vulgaris & Chroococcus minor. Journal of Scientific & Engineering Research, 7(11): 1139.

Béchet, Q., Laviale, M., Arsapin, N., Bonnefond, H. & Bernard, O. 2017. Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnology for Biofuels, 10(1): 136. DOI:

Benedetti, M., Vecchi, V., Barera, S. & Dall'Osto, L. 2018. Biomass from microalgae: the potential of domestication towards sustainable bio- factories. Microbial Cell Factories, 17(1): 173. DOI:

Blinová, L., Bartošová, A. & Gerulová, K. 2015. Cultivation of microalgae (Chlorella vulgaris) for biodiesel production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 23(36): 87-95. DOI:

Caporgno, M.P. & Mathys, A. 2018. Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5: 58. DOI:

Chen, C.Y., Zhao, X.Q., Yen, H.W., Ho, S.H., Cheng, C.L., Lee, D.J., Bai, F.W. & Chang, J.S. 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78: 1-10. DOI:

Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. & Das, K.C. 2009. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International Journal of Molecular Science, 10(2): 518-532. DOI:

Cortés, A.A., Sánchez-Fortún, S., García, M. & Bartolomé, M.C. 2018. Effects of pH on the growth rate exhibited of the wild-type and Cd-resistant Dictyosphaerium chlorelloides strains. Limnetica, 37(2): 229-238. DOI:

Darvehei, P., Bahri, P.A. & Moheimani, N.R. 2018. Model development for the growth of micro- algae: a review. Renewable and Sustainable Energy Reviews, 97: 233-258. DOI:

Driver, T., Bajhaiya, A.K., Allwood, J.W., Goodacre, R., Pittman, J.K. & Dean, A.P. 2015. Metabolic responses of eukaryotic microalgae to environmental stress limit the ability of FT-IR spectroscopy for species identification. Algal Research, 11: 148-155. DOI:

Dubinsky, Z., Falkowski, P.G. & Wyman, K. 1986. Light harvesting and utilization by phyto- plankton. Plant and Cell Physiology, 27(7): 1335-1349. DOI:

Eroglu, E., Eggers, P.K., Winslade, M., Smith, S.M. & Raston, C.L. 2013. Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chemistry, 15(11): 3155-3159. DOI:

Fan, J., Ning, K., Zeng, X., Luo, Y., Wang, D., Hu, J., Li, J., Xu, H., Huang, J., Wan, M., Wang, W., Zhang, D., Shen, G., Run, C., Liao, J., Fang, L., Huang, S., Jing, X., Su, X., Wang, A., Bai, L., H, Z.M., Xu, J. & Li, Y. 2015. Genomic foundation of starch-to-lipid switch in oleaginous Chlorella spp. Plant Physiology, 169(4): 2444-2461. DOI:

Filali, R., Tebbani, S., Dumur, D., Isambert, A., Pareau, D. & Lopes, F. 2011. Growth modeling of the green microalga Chlorella vulgaris in an air-lift photobioreactor. IFAC Proceedings Volumes, 44(1): 10603-10608. DOI:

Gong, J. & You, F. 2014. Value-added chemicals from microalgae: greener, more economical, or both? ACS Sustainable Chemistry & Engineering, 3(1): 82-96. DOI:

Han, F., Huang, J., Li, Y., Wang, W., Wan, M., Shen, G. & Wang, J. 2013. Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2. Bioresource Technology, 136: 418-424. DOI:

Ho, S.H., Chen, C.Y. & Chang, J.S. 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113: 244-252. DOI:

Ji, M.K., Yun, H.S., Hwang, J.H., Salama, E.S., Jeon, B.H. & Choi, J. 2017. Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production. Environmental Technology, 38(16): 2085-2092. DOI:

Kassim, M.A., Rashid, M.A. & Halim, R. 2017. Towards biorefinery production of microalgal biofuels and bioproducts: production of acetic acid from the fermentation of Chlorella sp. and Tetraselmis suecica hydrolysates. Green and Sustainable Chemistry, 7(2): 152-171. DOI:

Khairy, H.M., Shaltout, N.A., El-Naggar, M.F. & El- Naggar, N.A. 2014. Impact of elevated CO2 concentrations on the growth and ultrastructure of non-calcifying marine diatom (Chaetoceros gracilis F. Schütt). The Egyptian Journal of Aquatic Research, 40(3): 243-250. DOI:

Kroumov, A.D., Módenes, A.N., Trigueros, D.E.G., Espinoza-Quiñones, F.R., Borba, C.E., Scheufele, F.B. & Hinterholz, C.L. 2016. A systems approach for CO2 fixation from flue gas by microalgae - Theory review. Process Bio- chemistry, 51(11): 1817-1832. DOI:

Lam, M.K., Lee, K.T., Khoo, C.G., Uemura, Y. & Lim, J.W. 2016. Growth kinetic study of Chlorella vulgaris using lab-scale and pilot-scale photobioreactor: effect of CO2 concentration. Journal of Engineering and Science Techno- logy, 7: 73-87.

Lammers, P.J., Huesemann, M., Boeing, W., Anderson, D.B., Arnold, R.G., Bai, X., Bhole, M., Brhanavan, Y., Brown, L. & Brown, J. 2017. Review of the cultivation program within the national alliance for advanced biofuels and bioproducts. Algal Research, 22: 166-186. DOI:

Last, G.V. & Schmick, M.T. 2011. Identification and selection of major carbon dioxide stream compositions. United State Department of Energy, 1-19. DOI:

Lee, E., Jalalizadeh, M. & Zhang, Q. 2015. Growth kinetic models for microalgae cultivation: A review. Algal Research, 12: 497-512. DOI:

Li, T., Xu, J., Wu, H., Jiang, P., Chen, Z. & Xiang, W. 2019. Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Marine drugs, 17(2): 124. DOI:

Lise, A., Per, M. & Hansen, J. 2007. Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth. Marine Biology Research, 3(3): 134-144. DOI:

Lu, L., Yang, G., Zhu, B. & Pan, K. 2017. A comparative study on three quantitating methods of microalgal biomass. Indian Journal of Geo Marine Sciences, 46(11): 2265-2272.

Lv, J.M., Cheng, L.H., Xu, X.H., Zhang, L. & Chen, H.L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology, 101(17): 6797-6804. DOI:

Moroney, J.V. & Ynalvez, R.A. 2007. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryotic Cell, 6(8): 1251-1259. DOI:

Mousavi, S., Najafpour, G.D. & Mohammadi, M. 2018. CO2 bio-fixation and biofuel production in an airlift photobioreactor by an isolated strain of microalgae Coelastrum sp. SM under high CO2 concentrations. Environmental Science and Pollution Research, 25(30): 30139-30150. DOI:

Murdock, J.N. & Wetzel, D.L. 2009. FT-IR microspectroscopy enhances biological and ecological analysis of algae. Applied Spectroscopy Reviews, 44(4): 335-361. DOI:

Mussgnug, J.H., Klassen, V., Schlüter, A. & Kruse, O. 2010. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1): 51-56. DOI:

Nielsen, S.S. 2010. Phenol-sulfuric acid method for total carbohydrates. Food Analysis Laboratory Manual, 47-53. DOI:

Paine, C., Marthews, T.R., Vogt, D.R., Purves, D., Rees, M., Hector, A. & Turnbull, L.A. 2012. How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution, 3(2): 245- 256. DOI:

Pires, J., Alvim-Ferraz, M., Martins, F. & Simões, M. 2012. Carbon dioxide capture from flue gases using microalgae: engineering aspects and bio- refinery concept. Renewable and Sustainable Energy Reviews, 16(5): 3043-3053. DOI:

Posadas, E., del Mar Morales, M., Gomez, C., Acién, F.G. & Muñoz, R. 2015. Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chemical Engineering Journal, 265: 239-248. DOI:

Praveen, K., Abinandan, S., Natarajan, R. & Kavitha, M. 2018. Biochemical responses from biomass of isolated Chlorella sp., under different cultivation modes: non-linear modelling of growth kinetics. Brazilian Journal of Chemical Engineering, 35(2): 489-496. DOI:

Qiu, R., Gao, S., Lopez, P.A. & Ogden, K.L. 2017. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 28: 192-199. DOI:

Rosenberg, J.N., Mathias, A., Korth, K., Betenbaugh, M.J. & Oyler, G.A. 2011. Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibility evaluation. Biomass and Bioenergy, 35(9): 3865-3876. DOI:

Sahoo, D., Elangbam, G. & Devi, S.S. 2012. Using algae for carbon dioxide capture and bio-fuel production to combat climate change. Journal of the Phycological Society, 42(1): 32-38.

Salih, F.M. 2011. Microalgae tolerance to high concentrations of carbon dioxide: A review. Journal of Environmental Protection, 2(05): 648. DOI:

Tang, D., Han, W., Li, P., Miao, X. & Zhong, J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3): 3071-3076. DOI:

Taraldsvik, M. & Myklestad, S.M. 2000. The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. European Journal of Phycology, 35(2): 189-194. DOI:

Teoh, M.L., Wong, C.Y. & Phang, S.M. 2013. Effect of increased CO2 and temperature on growth, photosynthesis and lipid content of tropical algae. Malaysian Journal of Science, 32: 85-94. DOI:

Vaquero, I., Vázquez, M., Ruiz-Domínguez, M. & Vílchez, C. 2014. Enhanced production of a lutein-rich acidic environment microalga. Journal of Applied Microbiology, 116(4): 839-850. DOI:

Vidyashankar, S., Deviprasad, K., Chauhan, V., Ravishankar, G. & Sarada, R. 2013. Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions. Bioresource Technology, 144: 28-37. DOI:

Widjaja, A. 2010. Lipid production from microalgae as a promising candidate for biodiesel pro- duction. Makara Journal of Technology, 13(1): 47-51. DOI:

Yang, J., Rasa, E., Tantayotai, P., Scow, K.M., Yuan, H. & Hristova, K.R. 2011. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresource Techno- logy, 102(3): 3077-3082. DOI:

Yang, Y. & Gao, K. 2003. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). Journal of Applied Phycology, 15(5): 379-389. DOI:

Ying, K., D, J.G. & Zimmerman, W.B. 2014. Effects of CO2 and pH on growth of the microalga Dunaliella salina. Journal of Microbial & Biochemical Technology, 6(3): 167-173. DOI:

Yu, X.J., Huang, C.Y., Chen, H., Wang, D.S., Chen, J.L., Li, H.J., Liu, X.Y., Wang, Z., Sun, J. & Wang, Z.P. 2019. High-throughput Biochemical fingerprinting of oleaginous Aurantiochytrium sp. strains by fourier transform infrared spectroscopy (FT-IR) for lipid and carbohydrate productions. Molecules, 24(8): 1593. DOI:

Zeng, X., Danquah, M.K., Zhang, S., Zhang, X., Wu, M., Chen, X.D., Ng, I.S., Jing, K. & Lu, Y. 2012. Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chemical Engineering Journal, 183: 192-197. DOI:

Zhang, D., Dechatiwongse, P., del Rio-Chanona, E., Maitland, G., Hellgardt, K. & Vassiliadis, V.S. 2015. Modelling of light and temperature influences on cyanobacterial growth and biohydrogen production. Algal Research, 9: 263-274. DOI:



How to Cite




Research Articles