INFLUENCE OF ARBUSCULAR MYCORRHIZAL FUNGI AND SOIL AMELIORANTS ON THE MYCORRHIZAL COLONIZATION, CHLOROPHYLL CONTENT, AND PERFORMANCE GROWTH OF TWO TROPICAL TREE SEEDLINGS GROWN IN SOIL MEDIA WITH HIGH ALUMINUM CONTENT

https://doi.org/10.55230/mabjournal.v49i1.1653

Authors

  • SRI WILARSO BUDI Department of Silviculture, Faculty of Forestry, IPB University, Indonesia Jalan Lingkar Akademik Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
  • BUDI ARTY Department of Silviculture, Faculty of Forestry, IPB University, Indonesia Jalan Lingkar Akademik Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
  • CAHYO WIBOWO Department of Silviculture, Faculty of Forestry, IPB University, Indonesia Jalan Lingkar Akademik Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
  • ANDI SUKENDRO Department of Silviculture, Faculty of Forestry, IPB University, Indonesia Jalan Lingkar Akademik Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia

Keywords:

Acid soil, aluminium, MycoSilvi, plant growth, post mining soil

Abstract

Aluminum is one of heavy metals and its availability is correlated with low soil pH, such as in acidic soil as well as post mining soil and become limiting factors for plant growth. MycoSilvi is a biofertilizer inoculant product containing arbuscular mycorrhizal fungi enriched with Mycorrhizal Helper Bacteria’s (MHBs) designed for improving plant growth on post-mining soil media with low pH and high aluminum content. This study was conducted to determine the potential use of three variants of MycoSilvi, both single or in combination with soil ameliorant to enhance Albizia chinensis (Osbeck) Merrill and Pongamia pinnata (L.) Pierre growth. This study was conducted by randomized complete design with factorial scheme in a greenhouse for 4 months. The first factor consisted of four different levels based on MycoSilvi (M) inoculation: control (M0); MycoSilvi variant 1 (M1), MycoSilvi variant 2 (M2) and MycoSilvi variant 3 (M3). The second factor consisted of four levels based on the addition of lime and compost to soil medium: control (L0C0), addition of lime (L1C0), addition of compost (L0C1) and addition of lime and compost (L1C1). Data was analyzed using analysis of variance (ANOVA). Total chlorophyll content as indicated by leaf greenness index, height, steam diameter, biomass, root colonization and P accumulation on both plant species were observed after 12 weeks of planting. The results showed that the MycoSilvi inoculation differently colonized the roots and increased P uptake, leaf greenness index and growth of both plants species. The addition of lime and compost increased the mycorrhizal roots colonization, P uptake, leaf greenness index and plant growth of both plants’ species. The best result was obtained from the combination treatment of MycoSilvi variant 3, lime and compost

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Agus, C., Primananda, E., Faridah, E., Wulandari, D. & Lestari, T. 2019. Role of arbuscular mycorrhizal fungi and Pongamia pinnata for revegetation of tropical open-pit coal mining soils. Int. Journal of Environmental Science and Technology, 16(7): 3365-3374. DOI: https://doi.org/10.1007/s13762-018-1983-5

Alori, E. & Fawole, O. 2012. Phytoremediation of soils contaminated with aluminium and manganese by two arbuscular mycorrhizal fungi. Journal of Agricultural Science, 4(8): 246-252. DOI: https://doi.org/10.5539/jas.v4n8p246

Amijee, F., Tinker, P.B. & Stribley, D.P. 1989. The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytologist, 111: 435-446. DOI: https://doi.org/10.1111/j.1469-8137.1989.tb00706.x

Amudha, P., Prabakaran, R., Kumar, S.S. & Gopinath, L.R. 2017. Phytochemical analysis of Albizia chinensis (Osbeck) Merr Medicinal Plant. IOSR Journal of Pharmacy and Biological Science, 12(6): 89-92.

Anetor, M.O. & Akinrinde, E.A. 2007. Lime effectiveness of some fertilizers in a tropical acid alfisol. Journal of Central Europeean Agriculture, 8(1): 17-24.

Arumugam, R., Rajasekaran, S. & Nagarajan, S.M. 2010. Response of arbuscular mycorrhizal fungi and rhizobium inoculation on growth and chlorophyll content of Vigna unguiculata (L) Walp Var. Pusa 151. Journal of Applied Sciences and Environmental Management, 14(4): 113-115. DOI: https://doi.org/10.4314/jasem.v14i4.63282

Asmelash, F., Bekele, T. & Birhane, E. 2016. The Potential Role of Arbuscular Mycorrhizal Fungi in the Restoration of Degraded Lands. Frontiers in Microbiology, 7: 1095. DOI: https://doi.org/10.3389/fmicb.2016.01095

Bakhtiar, Y., Yahya, S., Sumaryono, W., Sinaga, M.S., Budi, S.W. & Tajudin, T. 2010. Isolation and identification of mycorrhizosphere bacteria and their antagonistic effects towards Ganoderma boniense in vitro. Journal of Microbiology Indonesia, 4(2): 96-102. DOI: https://doi.org/10.5454/mi.4.2.9

Bambara, S. & Ndakidemi, P.A. 2009. Effect of rhizobium inoculation, lime and molybdenum on photosynthesis and chlorophyll content of Phaseolus vulgaris L. African Journal of Microbiology Research, 3(11): 791-798.

Bationo, A., Hartemink, A., Lungu, O., Naimi, M., Okoth, P., Sambling, E. & Thiombano, L. 2006. African soils: their productivity and profitability for use. Paper presented at the African Fertiliser Summit, Abuja (Nigeria).

Baum, C., El-Tohamy, W. & Gruda, N. 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae, 187: 131-141. DOI: https://doi.org/10.1016/j.scienta.2015.03.002

Bekele, A., Kibret, K., Bedadi, B., Yli-Halla, M.J. & Balemi, T. 2018. Effects of Lime, Vermicompost, and Chemical P Fertilizer on Selected Properties of Acid Soils of Ebantu District, Western Highlands of Ethiopia. DOI: https://doi.org/10.1155/2018/8178305

Berruti, A., Lumini, E., Balestrini, R. & Bianciotto, V. 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: Let's benefit from past successes. Frontiers in Microbiology, 6: 1559. DOI: https://doi.org/10.3389/fmicb.2015.01559

Bhalerao, S.A. & Sharma, A.S. 2014. Etnopharmacology, phytochemistry and pharmacological evaluation of Pongomia pinnata (L) Pierre. International Journal of Current Reseach in Biosciences and Plant Biology, 1(3): 50-60.

Bini, D., Alcara, dos, Santos, C., da, Silva, M.C.P., Bonfirm, J.A. & Cardoso, E.J.B.N. 2017. Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis. Scientia Agricola, 2(2): 102-110. DOI: https://doi.org/10.1590/1678-992x-2016-0337

Borie, F., Rubio, R. & Morales, A. 2008. Arbuscular mycorrhizal fungi and soil aggregation. Journal Soil Plant Nutrition, 8(2): 9-18. DOI: https://doi.org/10.4067/S0718-27912008000200003

Bucking, H. & Kafle, A. 2015. Role of arbuscular fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy, 5: 587-612. DOI: https://doi.org/10.3390/agronomy5040587

Budi, S.W. & Christina, F. 2013. Coal waste powder amendment and arbuscular mycorrhizal fungi enhance the growth of jabon (Anthocephalus cadamba Miq) seedling in ultisol soil medium. Journal Tropica Soils, 18: 59-66. DOI: https://doi.org/10.5400/jts.2013.18.1.59

Budi, S.W. & Dewi A.P. 2016. Diversity of arbuscular mycorrhizal fungi under Jabon (Anthocephalus cadamba) plantation, Madiun, East Java. Jurnal Silvikultur Tropika, 7(2): 146-152.

Budi, S.W. & Setyaningsih, L. 2013. Arbuscular mycorrhizal fungi and biochar improved early growth of neem (Melia azedarach Linn.) seedling under greenhouse conditions. Jurnal Manajenen Hutan Tropika, 19(2): 103-110.

Budi, S.W., Wibowo, C., Sukendro, A. & Bekti, H.S. 2020. Growth improvement of Falcataria moluccana inoculated with MycoSilvi grown in post-mining silica sand soil amended with soil ameliorants. Biodiversitas, 21(1): 422-427. DOI: https://doi.org/10.13057/biodiv/d210149

Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., Jiang, Y., Liu, A., Zhao, P., Wang, M. & Ahammed, G.J. 2017. Combined Inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology, 8: 2516. DOI: https://doi.org/10.3389/fmicb.2017.02516

Chung, Ren-shih, Wu. & Sun-ho. 2008. Effect of corncob compost on plant growth in an acid red soil. Journal Communications in Soil Science and Plant Analysis, 28(9): 673-683. DOI: https://doi.org/10.1080/00103629709369820

Clapp, J.P., Fitter, A.H. & Merryweather, J.W. 1996. Arbuskular mycorrhizas. In: Methods for the Examination of Organismal Diversity in Soils and Sediments. Hall, G.S., Lasserre, P., Hawksworth, D.L. Oxon (UK) CAB International: Wallingford.

Delhaize, E. & Ryan, P.R. 1995. Aluminum toxicity and tolerance in plants. Plant Phytology, 107: 315-321. DOI: https://doi.org/10.1104/pp.107.2.315

Dong, D., Ramsey, M.H. & Thornton, I. 1995. Effect of soil pH on Al availability in soils and its uptake by the soybean plant (Glycine max). Journal of Geochemical Exploration, 55(1): 223-230. DOI: https://doi.org/10.1016/0375-6742(95)00012-7

El Kinany, S., Achbani, E., Faggroud, M., Ouahmane, L., El Hilali, R., Haggoud, A. & Bouamri, R. 2019. Effect of organic fertilizer and commercial arbuscular mycorrhizal fungi on the growth of micropropagated date palm cv. Feggouss. Journal of the Saudi Society of Agricultural Sciences, 18(4): 411-417. DOI: https://doi.org/10.1016/j.jssas.2018.01.004

Fini, F. & Ferrini, F. 2011. Effects of mulching with compost on growth and physiology of Acer campestre L. and Carpinus betulus L. Advances in Horticultural Science, 25(4): 232-238.

Foo, E., Ross, J.J., Jones, W.T. & Reid, J.B. 2013. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Annals of Botany, 111: 769-779. DOI: https://doi.org/10.1093/aob/mct041

Furtini-Neto, A.E., Siquiera, J.O., Curi, N. & Moreira, F.M.S. 2004. Fertilization in native species reforestation. In: Forest Nutrition and Fertilization. Goncalves, J.L.M, Benedetti V (Eds.). Brazil. pp. 351-383.

Guo, Y., Ni, Y. & Huang, J. 2010. Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of Lucerne in acid purplish soil in China. Tropical Grasslands, 44: 109-114.

Halder, M., Dhar, P.P., Mujib, A.S.M., Khan, M.S., Joardar, J.C. & Akhter, S. 2015. Effect of arbuscular mycorrhiza fungi inoculation on growth and uptake of mineral nutrition in Ipomoea aquatica. Curr. World Environment, 10(1): 67-75. DOI: https://doi.org/10.12944/CWE.10.1.08

Hart, M.M. & Forsythe, J.A. 2012. Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Scientia Horticulturae, 148: 206-214. DOI: https://doi.org/10.1016/j.scienta.2012.09.018

Hause, B. & Fester, T. 2005. Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta, 221: 184-196. DOI: https://doi.org/10.1007/s00425-004-1436-x

Haynes, R.J. & Naidu, R. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 51(2): 123-137. DOI: https://doi.org/10.1023/A:1009738307837

Hudson, T.L., Fox, F.D. & Plumlee, G.S. 1999. Metal mining and the environment. American Geological Institut, Alexandria (Virginia).

Jayani, F.M., Budi, S.W. & Pamoengkas, P. 2018. Response of forest tree species inoculated with MycoSilvi and soil ameliorant addition grown in silica sand. Asian Journal Agricultural and Biology, 6(4): 556-565.

Jung, C., Maeder, V., Funk, F., Beat, F., Sticher, H. & Frossard, E. 2003. Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant Soil, 252: 301-312. DOI: https://doi.org/10.1023/A:1024775803759

Karmee, S.K. & Chadha, A. 2005. Preparation of biodiesel from crude oil of Pongomia pinnata. Bioresource Technology, 96: 1425-1429. DOI: https://doi.org/10.1016/j.biortech.2004.12.011

Kochian, L.V., Hoekenga, O.A. & Pineros, M.A. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review Plant Biology, 55: 459-493. DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141655

Kohl, L. & van, der, Heijden. 2016. Arbuskular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biology & Biochemistry, 94: 191-199. DOI: https://doi.org/10.1016/j.soilbio.2015.11.019

Manjaribe, C., Frasier, C., Rakouth, B. & Louis, E. 2013. Ecological Restoration and Reforestation of Fragmented Forests in Kianjavato, Madagascar. International Journal of Ecology, 2013(2013). DOI: https://doi.org/10.1155/2013/726275

Maulana, A.F., Turjaman, M., Sato, T., Hashimoto, Y., Cheng, W. & Tawaraya, K. 2017. Growth response of four leguminous trees to native arbuscular mycorrhizal fungi from tropical forest in Indonesia. International Journal of Plant and Soil Science, 20(3): 1-13. DOI: https://doi.org/10.9734/IJPSS/2017/37433

Mirkalaei, S.M.M., Ardebili, Z.O. & Mostafavi, M. 2013. The effects of different organic fertilizers on the growth of lilies (Lillium longiflorum). International Research Journal of Applied and Basic Sciences, 4(1): 181-186.

Mrabet, S.E., Ouahmane, L., Mousadik, A.E. Msanda, F. & Abbas, Y. 2014. The effectiveness of arbuscular mycorrhizal inoculation and biocompost addition for enhancing reforestation with Argania spinosa in Morocco. Open Journal of Forestry, 4(1): 14-23. DOI: https://doi.org/10.4236/ojf.2014.41003

Muindi, E.M., Mrema, J., Semu, E., Mtakwa, P. & Gachene, C. 2015. Effects of lime-aluminiumphosphate interactions on maize growth and yields in acid soils of the Kenya highlands. American Journal of Agriculture and Forestry, 3(6): 244-252. DOI: https://doi.org/10.11648/j.ajaf.20150306.11

Novak, J.M., Ippolito, J.A., Ducey, T.F., Watts, D.W., Spokas, K.A., Trippe, K.M., Sigua, G.C. & Johnson, M.G. 2018. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity. Chemosphere, 205: 709-718. DOI: https://doi.org/10.1016/j.chemosphere.2018.04.107

O'Connor, P.J., Smith, S.E. & Smith, F.A. 2001. Arbuscular mycorrhizal associations in the southern simpson desert. Australian Journal Botany, 49: 493-499. DOI: https://doi.org/10.1071/BT00014

Pal, A. & Pandey, S. 2017. Effect of arbuscular mycorrhizal fungi on chemical properties of experimental barren soil with pearl millet (Pennisetum glaucum L.) crop. Science and Technology, 7(3): 82-86.

Percival, G.C., Keary, I.P. & Novis, K. 2008. The potential of a chlorophyll content SPAD meter to quantify nutrient stress in foliar tissue of sycamore (Acer pseudoplatanus), english oak (Quercus robur), and european beech (Fagus sylvatica). Arboriculture & Urban Forestry, 34: 89-100. DOI: https://doi.org/10.48044/jauf.2008.012

Rhicardson, A.E., Barea, J.M., McNeill, A.M. & Prigent-Combaret, C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganism. Plant Soil, 321: 305-339. DOI: https://doi.org/10.1007/s11104-009-9895-2

Sahner, J., Budi, S.W., Barus, H., Edy, N., Meyer, M., Corres, M.D. & Polle, A. 2015. Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations. PLoS ONE, 10(9): e0138077. DOI: https://doi.org/10.1371/journal.pone.0138077

Sato, T., Ezawa, T., Cheng, W. & Tawaraya, K. 2015. Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Science and Plant Nutrition, 61: 269-274. DOI: https://doi.org/10.1080/00380768.2014.993298

Sharma, N., Yadav, K. & Aggarwal, A. 2017. Role of potassium and arbuscular mycorrhizal fungi in alleviation of water stress on Vigna mungo. Environmental and Experimental Biology, 15: 15-24.

Smith, S.E., Jakobsen, I., Gronlund, M. & Smith, F.A. 2011. Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition. Plant Physiology, 156: 1050-1057. DOI: https://doi.org/10.1104/pp.111.174581

Subagyo, H.N., Suharta & Siswanto, A.B. 2004. Agricultural Soil in Indonesia. In: Indonesian Land Resources and Management. A. Adimihardja, L.I. Amien, F. Agus, D. Djaenudin (Eds.). Centre for Soil an Agro-climate Research and Development, Bogor. pp. 21-66.

Teshome, B., Tana, T., Dechassa, N. & Singh, T.N. 2017. Effect of Compost, Lime and P on Selected Properties of Acidic Soils of Assosa. Biology Agriculture and Healthcare, 7(5): 34- 44.

Van, Uexkull, H.R. & Bosshart, R.P. 1989. Management of acid upland soils in Asia. In: Management of Acid Soils in the Humid Tropics of Asia. Craswell, E.T. and Pushparajah, E. (eds). ACIAR Monograph, 13: 2-20.

Wahab, S.A.A. & Marikar, F.A. 2012. The environmental impact of gold mines: pollution by heavy metals. Central European Journal of Engineering, 2: 304-313. DOI: https://doi.org/10.2478/s13531-011-0052-3

Wulandari, D., Saridi, Cheng, W. & Tawaraya, K. 2016. Arbuscular mycorrhizal fungi inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan. Forest Ecology and Management, 67-73. DOI: https://doi.org/10.1016/j.foreco.2016.06.008

Yadav, R.D., Jain, S.K., Alok, S., Prajapati, S.K. & Verma, A. 2011. Pongomia pinata: An overview. International Journal of Pharmaceutical Sciences Research, 2(3): 494-500.

Zatta, P., Lain, E. & Cagnolini, C. 2000. Effect of aluminium on activity of Krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate. European Journal of Biochemistry, 267: 3049-3055. DOI: https://doi.org/10.1046/j.1432-1033.2000.01328.x

Zhu, X.Q., Wang, C.Y., Chen, H. & Tang, M. 2014. Effect of arbuscular mycorrhizal fungi on photosynthesis, carbon content and calorific value of black locust seedlings. Photosynthetica, 52: 247-252. DOI: https://doi.org/10.1007/s11099-014-0031-z

Published

30-06-2020

How to Cite

BUDI, S. W., ARTY, B. ., WIBOWO , C. ., & SUKENDRO, A. . (2020). INFLUENCE OF ARBUSCULAR MYCORRHIZAL FUNGI AND SOIL AMELIORANTS ON THE MYCORRHIZAL COLONIZATION, CHLOROPHYLL CONTENT, AND PERFORMANCE GROWTH OF TWO TROPICAL TREE SEEDLINGS GROWN IN SOIL MEDIA WITH HIGH ALUMINUM CONTENT. Malaysian Applied Biology, 49(1), 41–53. https://doi.org/10.55230/mabjournal.v49i1.1653

Issue

Section

Research Articles