BIOACTIVITY OF BLACK CUMIN OIL ON THE SENESCENCE OF HER-2-OVEREXPRESSING BREAST CANCER CELLS
Keywords:
black cumin oil, MCF7/HER2 cell, senescence, p-cymene, breast cancerAbstract
Senescence-induced therapy has been improved to increase its cytotoxicity and reduce the resistance of breast cancer cells to chemotherapy agents. An example of a potential senescence-inducing agent is black cumin oil (BCO) because one of its major compounds, α-pinene, can induce senescent cells. This study aims to explore the senescence-inducing activity of BCO in HER2-overexpressing breast cancer cells (MCF7/HER2). The yield obtained from hydro-distillation of BCO was 0.54%, and the main compounds were p-cymene (48.03%), dihydrocarveol (11.39%), and α-pinene (11.29%). BCO exhibited a moderate cytotoxicity profile indicated by IC50, which was >200 μg/mL in both cell lines. In combination with doxorubicin, BCO did not increase the cytotoxicity of doxorubicin. Moreover, BCO induced senescence by increasing 3% of the senescent cells compared with that of the control cells. However, this result was lower than that of the positive control on MCF7/HER2. BCO and doxorubicin combination increased the senescent cells by 3%–7% compared with the positive control on MCF7/HER2 cells. Therefore, the moderate cytotoxicity of BCO could be beneficial to the application of BCO as a supportive agent combined with a chemotherapy drug to increase cancer cells senescent and consequently inhibit cell proliferation.
Downloads
Metrics
References
Assmann, C.E., Cadoná, F.C., Bonadiman, B.S.R., Dornelles, E.B., Trevisan, G. & da Cruz, I.B.M. 2018. Tea tree oil presents in vitro antitumor activity on breast cancer cells without cytotoxic effects on fibroblasts and on peripheral blood mononuclear cells. Biomedicine & Pharmacotherapy, 103: 1253–1261. DOI: https://doi.org/10.1016/j.biopha.2018.04.096
Aydin, E., Turkez, H. & Geikogklu, F. 2013. Antioxidantive, anticancer, and genotoxic properties of alpha-pinene on N2a neuroblastoma cells. Biologia, 68(5): 1004-1009. DOI: https://doi.org/10.2478/s11756-013-0230-2
Barra, A. 2009. Factors affecting chemical variability of essential oils: a review of recent developments. Natural Product Communication, 4(8): 1147–1154. DOI: https://doi.org/10.1177/1934578X0900400827
Benkaci-Ali, F., Baaliouamer, A., Meklati, B.Y., Chemat, F. 2007. Chemical composition of seed essential oils from Algerian Nigella sativa extracted by microwave and hydrodistillation. Flavour and Fragnance Journal, 22(2): 148-153. DOI: https://doi.org/10.1002/ffj.1773
Bourgou, S., Pichette, A., Marzouk, B. & Legault, J. 2010. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. South African Journal of Botany, 76(2): 210-216. DOI: https://doi.org/10.1016/j.sajb.2009.10.009
Childs, B.G., Baker, D.J., Kirkland, J.L., Campisi, J. & van Deursen, J.M. 2014. Senescence and apoptosis: dueling or complementary cell fates? EMBO Reports, 15(11): 1139–1153. DOI: https://doi.org/10.15252/embr.201439245
Childs, B.G., Durik, M., Baker, D.J. & Van Deursen, J.M. 2015. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nature Medicine, 21(12): 1424–435. DOI: https://doi.org/10.1038/nm.4000
Debacq-Chainiaux, F., Erusalimsky, J.D., Campisi, J. & Toussaint, O. 2009. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nature Protocols, 4: 1798–1806. DOI: https://doi.org/10.1038/nprot.2009.191
Ding, W., Liping, N., Xing, H., Wei, Z., Zhoua, Q., Nong, R. & Chen, J. 2018. Essential oil extracted from leaf of Phoebe bournei (Hemsl.) yang: Chemical constituents, antitumor, antibacterial, hypoglycemic activities. Natural Product Research, 34(17): 2524–2527. DOI: https://doi.org/10.1080/14786419.2018.1542393
Ferraz, R.P.C., Bomfim, D.S., Carvalho, N.C., Soares, M.B.P., da Silva, T.B., Machado, W.J., Prata, A.P.N., Costa, E.V., Moraes, V.R.S., Nogueira, P.C.L. & Bezerra, D.P. 2013. Cytotoxic effect of leaf essential oil of Lippia gracilis Schauer (Verbenaceae). Phytomedicine, 20: 615–621. DOI: https://doi.org/10.1016/j.phymed.2013.01.015
Fraternale, D., Ricci, D., Calcabrini, C., Guescini, M., Martinelli, C. & Sestili, P. 2013. Cytotoxic activity of essential oils of aerial parts and ripe fruits of Echinophora spinosa (Apiaceae). Natural Product Communications, 8(11): 1645–1649. DOI: https://doi.org/10.1177/1934578X1300801137
Harzallah, H.J., Kouidhi, B., Flamini, G., Bakhrouf, A. & Mahjoub, T. 2011. Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella sativa essential oil and thymoquinone. Food Chemistry, 129(4): 1469–1474. DOI: https://doi.org/10.1016/j.foodchem.2011.05.117
Hou, J., Zhang, Y., Zhu, Y., Zhou, B., Ren, C., Liang, S. & Guo, Y. 2019. α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells. Medical Science Monitor, 25: 6631–6638. DOI: https://doi.org/10.12659/MSM.916419
Hu, X. & Zhang, H. 2019. Doxorubicin-induced cancer cell senescence shows a time delay effect and is inhibited by epithelial-mesenchymal transition (EMT). Medical Science Monitor, 25: 3617–3623. DOI: https://doi.org/10.12659/MSM.914295
Ishikawa, T., Ichikawa, Y., Shimizu, D., Sasaki, T., Tanabe, M., Chishima, T., Takabe, K. & Endo, I. 2014. The role of HER-2 in breast cancer. Journal of Surgical Sciences, 2(1): 4–9.
Jin, K.S., Bak, M.J., Mira, J., Lim, H.-J., Wan-Kuen, J. & Woosik, J. 2010. α-Pinene triggers oxidative stress and related signaling pathways in A549 and HepG2 cells. Food Science Biotechnology, 19(5): 1325–1332. DOI: https://doi.org/10.1007/s10068-010-0189-5
Khan, M.A., Chen, H., Tania, M. & Zhang, D. 2011. Anticancer activities of Nigella sativa (black cumin). African Journal of Traditional, Complementary, and Alternative Medicine, 8(5): 226–232. https://doi.org/10.4314/ajtcam.v8i5s.10 DOI: https://doi.org/10.4314/ajtcam.v8i5S.10
Lee, S. & Lee, J.S. 2019. Cellular senescence: A promising strategy for cancer therapy. BMB Reports, 52(1): 35–41. DOI: https://doi.org/10.5483/BMBRep.2019.52.1.294
Lenis-Rojas, O.A., Robalo, M.P., Tomaz A.I., Carvalho, A., Fernandes, A.R., Marques, F. Folgueira, M., Yáñez, J., Vázquez-García, D., López, T.M., Fernández, A., Fernández, J.J. 2018. RuII(p-cymene) compounds as effective and selective anticancer candidates with no toxicity in vivo. Inorganic Chemistry, 57(21): 13150–13166. DOI: https://doi.org/10.1021/acs.inorgchem.8b01270
Li, J. & Wang, S.X. 2016. Synergistic enhancement of the antitumor activity of 5-fluorouracil by bornyl acetate in SGC-7901 human gastric cancer cells and the determination of the underlying mechanism of action. J BUON, 21(1): 108–117.
Pavithra, P.S., Mehta, A. & Verma, R.S. 2018. Aromadendrene oxide 2, induces apoptosis in skin epidermoid cancer cells through ROS mediated mitochondrial pathway. Life Sciences, 197: 19–29. DOI: https://doi.org/10.1016/j.lfs.2018.01.029
Qin, S., Schulte, B.A. & Wang, G.Y. 2018. Role of senescence induction in cancer treatment. World Journal of Clinical Oncology, 9(8): 180–187. DOI: https://doi.org/10.5306/wjco.v9.i8.180
Rabi, T. & Bishayee, A. 2009. d-Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: Generation of reactive oxygen species and induction of apoptosis. Journal of Carcinogenesis, 8: 9. DOI: https://doi.org/10.4103/1477-3163.51368
Sangwan, N.S., Farooqi, A.H.A., Shabih, F.R. & Sangwan, S. 2001. Regulation of essential oil production in plants. Plant Growth Regulation, 34: 3-21. DOI: https://doi.org/10.1023/A:1013386921596
Santos, W.B.R., Melo, M.A.O., Alves, R.S., de Brito, R.G., Rabelo, T.K., Prado, L.S., Silva, V.K.D.S., Bezerra, D.P., de Menezes-Filho, J.E.R., Souza, D.S., de Vasconcelos, C.M.L., Scotti, L., Scotti, M.T., Lucca, J.W., Quintans-Júnior, L.J & Guimarães AG. 2019. p-Cymene attenuates cancer pain via inhibitory pathways and modulation of calcium currents. Phytomedicine, 61: 152836. DOI: https://doi.org/10.1016/j.phymed.2019.152836
Shah, B.B., Baksi, R., Chaudagar, K.K., Nivsarkar, M. & Mehta, A.A. 2018. Anti-leukemic and anti-angiogenic effects of d-Limonene on K562-implanted C57BL/6 mice and the chick chorioallantoic membrane model. Animal Models and Experimental Medicine, 1: 328–333. DOI: https://doi.org/10.1002/ame2.12039
Shahwar, D., Ullah, S., Khan, M.A., Ahmad, N., Saeed, A. & Ullah, S. 2015. Anticancer activity of Cinnamon tamala leaf constituents towards human ovarian cancer cells. Pakistan Journal of Pharmaceutical Sciences, 28: 969–972.
Wang, H.L., Chang, J.C., Fang, L.W., Hsu, H.F., Lee, L.C., Yang, J.F., Liang, M.T., Hsiao, P.C., Wang, C.P., Wang, S.W., Chang, C.C. & Houng, J.Y. 2018. Bulnesia sarmientoi supercritical fluid extract exhibits necroptotic effects and anti-metastatic activity on lung cancer cells. Molecules, 23(12): 3304. DOI: https://doi.org/10.3390/molecules23123304
Woo, C.C., Loo, S.Y., Gee, V., Yap, C.W., Sethi, G., Kumar, A.P. & Tan, K.H.B. 2011. Anticancer activity of thymoquinone in breast cancer cells: Possible involvement of PPAR-γ pathway. Biochemical Pharmacology, 82(5): 464–475. DOI: https://doi.org/10.1016/j.bcp.2011.05.030
Xu, Q., Li, M., Yang, M., Yang, J., Xie, J., Lu, X., Wang, F. & Chen, W. 2018. α-pinene regulates miR-221 and induces G2/M phase cell cycle arrest in human hepatocellular carcinoma cells. Bioscience Reports, 38(6): BSR20180980. DOI: https://doi.org/10.1042/BSR20180980
Yu, X., Lin, H., Wang, Y., Lv, W., Zhang, S., Qian, Y., Deng, X., Feng, N., Yu, H. & Qian, B. 2018. d-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. OncoTargets and Therapy, 11: 1833–1847. DOI: https://doi.org/10.2147/OTT.S155716
Zhang, Z., Guo, S., Liu, X. & Gao, X. 2015. Synergistic antitumor effect of α-pinene and β-pinene with paclitaxel against non-small-cell lung carcinoma (NSCLC). Drug Research, 65(4): 214–218. https://doi.org/10.1055/s-0034-1377025 DOI: https://doi.org/10.1055/s-0034-1377025
Zhao, Y., Chen, R., Wang, Y. & Yang, Y. 2018. α-Pinene inhibits human prostate cancer growth in a mouse xenograft model. Chemotherapy, 63(1): 1–7. DOI: https://doi.org/10.1159/000479863
Zubair, H., Khan, H.Y., Sohali, A., Azim, S., Ullah, M.F., Ahmad, A., Sarkar, F.H. & Hadi, S.M., 2013. Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: Putative anticancer mechanism of antioxidants. Cell Death and Disease, 4(6): e660. DOI: https://doi.org/10.1038/cddis.2013.172
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission