• FARADIBA NUR AHLINA Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • LISYARATIH ANGGRIANI Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • IRFANI AURA SALSABILA Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • RIRIS ISTIGHFARI JENIE Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia


black cumin oil, MCF7/HER2 cell, senescence, p-cymene, breast cancer


Senescence-induced therapy has been improved to increase its cytotoxicity and reduce the resistance of breast cancer cells to chemotherapy agents. An example of a potential senescence-inducing agent is black cumin oil (BCO) because one of its major compounds, α-pinene, can induce senescent cells. This study aims to explore the senescence-inducing activity of BCO in HER2-overexpressing breast cancer cells (MCF7/HER2). The yield obtained from hydro-distillation of BCO was 0.54%, and the main compounds were p-cymene (48.03%), dihydrocarveol (11.39%), and α-pinene (11.29%). BCO exhibited a moderate cytotoxicity profile indicated by IC50, which was >200 μg/mL in both cell lines. In combination with doxorubicin, BCO did not increase the cytotoxicity of doxorubicin. Moreover, BCO induced senescence by increasing 3% of the senescent cells compared with that of the control cells. However, this result was lower than that of the positive control on MCF7/HER2. BCO and doxorubicin combination increased the senescent cells by 3%–7% compared with the positive control on MCF7/HER2 cells. Therefore, the moderate cytotoxicity of BCO could be beneficial to the application of BCO as a supportive agent combined with a chemotherapy drug to increase cancer cells senescent and consequently inhibit cell proliferation.


Download data is not yet available.


Metrics Loading ...


Assmann, C.E., Cadoná, F.C., Bonadiman, B.S.R., Dornelles, E.B., Trevisan, G. & da Cruz, I.B.M. 2018. Tea tree oil presents in vitro antitumor activity on breast cancer cells without cytotoxic effects on fibroblasts and on peripheral blood mononuclear cells. Biomedicine & Pharmacotherapy, 103: 1253–1261. DOI:

Aydin, E., Turkez, H. & Geikogklu, F. 2013. Antioxidantive, anticancer, and genotoxic properties of alpha-pinene on N2a neuroblastoma cells. Biologia, 68(5): 1004-1009. DOI:

Barra, A. 2009. Factors affecting chemical variability of essential oils: a review of recent developments. Natural Product Communication, 4(8): 1147–1154. DOI:

Benkaci-Ali, F., Baaliouamer, A., Meklati, B.Y., Chemat, F. 2007. Chemical composition of seed essential oils from Algerian Nigella sativa extracted by microwave and hydrodistillation. Flavour and Fragnance Journal, 22(2): 148-153. DOI:

Bourgou, S., Pichette, A., Marzouk, B. & Legault, J. 2010. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. South African Journal of Botany, 76(2): 210-216. DOI:

Childs, B.G., Baker, D.J., Kirkland, J.L., Campisi, J. & van Deursen, J.M. 2014. Senescence and apoptosis: dueling or complementary cell fates? EMBO Reports, 15(11): 1139–1153. DOI:

Childs, B.G., Durik, M., Baker, D.J. & Van Deursen, J.M. 2015. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nature Medicine, 21(12): 1424–435. DOI:

Debacq-Chainiaux, F., Erusalimsky, J.D., Campisi, J. & Toussaint, O. 2009. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nature Protocols, 4: 1798–1806. DOI:

Ding, W., Liping, N., Xing, H., Wei, Z., Zhoua, Q., Nong, R. & Chen, J. 2018. Essential oil extracted from leaf of Phoebe bournei (Hemsl.) yang: Chemical constituents, antitumor, antibacterial, hypoglycemic activities. Natural Product Research, 34(17): 2524–2527. DOI:

Ferraz, R.P.C., Bomfim, D.S., Carvalho, N.C., Soares, M.B.P., da Silva, T.B., Machado, W.J., Prata, A.P.N., Costa, E.V., Moraes, V.R.S., Nogueira, P.C.L. & Bezerra, D.P. 2013. Cytotoxic effect of leaf essential oil of Lippia gracilis Schauer (Verbenaceae). Phytomedicine, 20: 615–621. DOI:

Fraternale, D., Ricci, D., Calcabrini, C., Guescini, M., Martinelli, C. & Sestili, P. 2013. Cytotoxic activity of essential oils of aerial parts and ripe fruits of Echinophora spinosa (Apiaceae). Natural Product Communications, 8(11): 1645–1649. DOI:

Harzallah, H.J., Kouidhi, B., Flamini, G., Bakhrouf, A. & Mahjoub, T. 2011. Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella sativa essential oil and thymoquinone. Food Chemistry, 129(4): 1469–1474. DOI:

Hou, J., Zhang, Y., Zhu, Y., Zhou, B., Ren, C., Liang, S. & Guo, Y. 2019. α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells. Medical Science Monitor, 25: 6631–6638. DOI:

Hu, X. & Zhang, H. 2019. Doxorubicin-induced cancer cell senescence shows a time delay effect and is inhibited by epithelial-mesenchymal transition (EMT). Medical Science Monitor, 25: 3617–3623. DOI:

Ishikawa, T., Ichikawa, Y., Shimizu, D., Sasaki, T., Tanabe, M., Chishima, T., Takabe, K. & Endo, I. 2014. The role of HER-2 in breast cancer. Journal of Surgical Sciences, 2(1): 4–9.

Jin, K.S., Bak, M.J., Mira, J., Lim, H.-J., Wan-Kuen, J. & Woosik, J. 2010. α-Pinene triggers oxidative stress and related signaling pathways in A549 and HepG2 cells. Food Science Biotechnology, 19(5): 1325–1332. DOI:

Khan, M.A., Chen, H., Tania, M. & Zhang, D. 2011. Anticancer activities of Nigella sativa (black cumin). African Journal of Traditional, Complementary, and Alternative Medicine, 8(5): 226–232. DOI:

Lee, S. & Lee, J.S. 2019. Cellular senescence: A promising strategy for cancer therapy. BMB Reports, 52(1): 35–41. DOI:

Lenis-Rojas, O.A., Robalo, M.P., Tomaz A.I., Carvalho, A., Fernandes, A.R., Marques, F. Folgueira, M., Yáñez, J., Vázquez-García, D., López, T.M., Fernández, A., Fernández, J.J. 2018. RuII(p-cymene) compounds as effective and selective anticancer candidates with no toxicity in vivo. Inorganic Chemistry, 57(21): 13150–13166. DOI:

Li, J. & Wang, S.X. 2016. Synergistic enhancement of the antitumor activity of 5-fluorouracil by bornyl acetate in SGC-7901 human gastric cancer cells and the determination of the underlying mechanism of action. J BUON, 21(1): 108–117.

Pavithra, P.S., Mehta, A. & Verma, R.S. 2018. Aromadendrene oxide 2, induces apoptosis in skin epidermoid cancer cells through ROS mediated mitochondrial pathway. Life Sciences, 197: 19–29. DOI:

Qin, S., Schulte, B.A. & Wang, G.Y. 2018. Role of senescence induction in cancer treatment. World Journal of Clinical Oncology, 9(8): 180–187. DOI:

Rabi, T. & Bishayee, A. 2009. d-Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: Generation of reactive oxygen species and induction of apoptosis. Journal of Carcinogenesis, 8: 9. DOI:

Sangwan, N.S., Farooqi, A.H.A., Shabih, F.R. & Sangwan, S. 2001. Regulation of essential oil production in plants. Plant Growth Regulation, 34: 3-21. DOI:

Santos, W.B.R., Melo, M.A.O., Alves, R.S., de Brito, R.G., Rabelo, T.K., Prado, L.S., Silva, V.K.D.S., Bezerra, D.P., de Menezes-Filho, J.E.R., Souza, D.S., de Vasconcelos, C.M.L., Scotti, L., Scotti, M.T., Lucca, J.W., Quintans-Júnior, L.J & Guimarães AG. 2019. p-Cymene attenuates cancer pain via inhibitory pathways and modulation of calcium currents. Phytomedicine, 61: 152836. DOI:

Shah, B.B., Baksi, R., Chaudagar, K.K., Nivsarkar, M. & Mehta, A.A. 2018. Anti-leukemic and anti-angiogenic effects of d-Limonene on K562-implanted C57BL/6 mice and the chick chorioallantoic membrane model. Animal Models and Experimental Medicine, 1: 328–333. DOI:

Shahwar, D., Ullah, S., Khan, M.A., Ahmad, N., Saeed, A. & Ullah, S. 2015. Anticancer activity of Cinnamon tamala leaf constituents towards human ovarian cancer cells. Pakistan Journal of Pharmaceutical Sciences, 28: 969–972.

Wang, H.L., Chang, J.C., Fang, L.W., Hsu, H.F., Lee, L.C., Yang, J.F., Liang, M.T., Hsiao, P.C., Wang, C.P., Wang, S.W., Chang, C.C. & Houng, J.Y. 2018. Bulnesia sarmientoi supercritical fluid extract exhibits necroptotic effects and anti-metastatic activity on lung cancer cells. Molecules, 23(12): 3304. DOI:

Woo, C.C., Loo, S.Y., Gee, V., Yap, C.W., Sethi, G., Kumar, A.P. & Tan, K.H.B. 2011. Anticancer activity of thymoquinone in breast cancer cells: Possible involvement of PPAR-γ pathway. Biochemical Pharmacology, 82(5): 464–475. DOI:

Xu, Q., Li, M., Yang, M., Yang, J., Xie, J., Lu, X., Wang, F. & Chen, W. 2018. α-pinene regulates miR-221 and induces G2/M phase cell cycle arrest in human hepatocellular carcinoma cells. Bioscience Reports, 38(6): BSR20180980. DOI:

Yu, X., Lin, H., Wang, Y., Lv, W., Zhang, S., Qian, Y., Deng, X., Feng, N., Yu, H. & Qian, B. 2018. d-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. OncoTargets and Therapy, 11: 1833–1847. DOI:

Zhang, Z., Guo, S., Liu, X. & Gao, X. 2015. Synergistic antitumor effect of α-pinene and β-pinene with paclitaxel against non-small-cell lung carcinoma (NSCLC). Drug Research, 65(4): 214–218. DOI:

Zhao, Y., Chen, R., Wang, Y. & Yang, Y. 2018. α-Pinene inhibits human prostate cancer growth in a mouse xenograft model. Chemotherapy, 63(1): 1–7. DOI:

Zubair, H., Khan, H.Y., Sohali, A., Azim, S., Ullah, M.F., Ahmad, A., Sarkar, F.H. & Hadi, S.M., 2013. Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: Putative anticancer mechanism of antioxidants. Cell Death and Disease, 4(6): e660. DOI:



How to Cite




Research Articles