• SITI ZALEHA RADUAN Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University of Malaysia; Department of Paraclinical Sciences, Universiti Malaysia Sarawak
  • QAMAR UDDIN AHMED Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University of Malaysia
  • ABDUL RAZAK KASMURI Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University of Malaysia
  • MUHAMAD RUSDI AHMAD RUSMILI Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University of Malaysia
  • MD ABDUR RASHID MIA Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University of Malaysia
  • WAN MOHD AZIZI WAN SULAIMAN Faculty of Health Sciences, PICOMS International University College
  • MUHAMMAD HAMDI MAHMOOD Department of Preclinical Sciences, Universiti Malaysia Sarawak
  • MOHD FAROOQ SHAIKH Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia


hexane, chloroform, methanol, aqueous, antioxidant, Litsea garcia


The plant species belonging to the Litsea genus are widely investigated due to their nutritional and medicinal purposes. In this regard, this study is another similar sincere effort in which the antioxidant property and phytochemical composition of Litsea garciae (L. garciae) bark’s hexane, chloroform, methanol, and aqueous extracts were evaluated to confirm its traditional benefits. The total flavonoid content (TFC) and total phenolic content (TPC) were determined first, followed by an assessment of in vitro antioxidant activity using the DPPH and FRAP assays. The composition of the secondary metabolites was determined using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry (UHPLC-MS). As a result, methanol extract was recorded to have the highest TPC value aligned with its positive appearance in phytochemical screening. Its antioxidant capacity indicated the least IC50. The results indicated that the significant free radical scavenging activity was due to the methanolic extract's high phenolic content. The secondary metabolites found in the methanol extract varied significantly according to UHPLC-MS analysis. The major phenolic compounds were found including N-trans-feruloyl-4-O-methyldopamine, N-cis-feruloyltyramine, epicatechin-(4beta->6)-epicatechin-(2beta->7,4beta->8)-epicatechin, 7-Hydroxy-3-(4-methoxyphenyl)-4-propyl-2H-1-benzopyran-2-one and 9-O-Methylneodunol. In general, the results indicate that L. garciae bark may be a promising source of novel natural compounds with antioxidative properties.


Download data is not yet available.


Metrics Loading ...

Author Biography

MD ABDUR RASHID MIA, Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University of Malaysia

Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, IIUM


Ácsová, A., Martiniaková, S. & Hojerová, J. 2019. Selected in vitro methods to determine antioxidant activity of hydrophilic/lipophilic substances. Acta Chimica Slovaca, 12(2): 200-211. DOI:

Amalia, T., Saputri, F.C. & Surini, S. 2019. Total Phenolic Contents, Quercetin Determination and Anti Elastase Activity of Melastoma malabathricum L. Leaves Extract from Different Method of Extractions. Pharmacognosy Journal, 11(1): 124-128. DOI:

Ayoola, G., Coker, H., Adesegun, S., Adepoju-Bello, A., Obaweya, K., Ezennia, E.C. & Atangbayila, T. 2008. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Tropical Journal of Pharmaceutical Research, 7(3): 1019-1024. DOI:

Bors, W. & Michel, C. 2002. Chemistry of the antioxidant effect of polyphenols. Annals of the New York Academy of Sciences, 957(1): 57-69. DOI:

Chahardoli, A., Karimi, N. & Fattahi, A. 2018. Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy. Advanced Powder Technology, 29(1): 202-210. DOI:

Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., ElSohly, M.A. & Khan, I.A. 2014. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evidence-Based Complementary and Alternative Medicine, 2014: 1-9. DOI:

Chang, C.-C., Yang, M.-H., Wen, H.-M. & Chern, J.-C. 2002. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Journal of Food and Drug Analysis, 10(3). DOI:

Chen, J., Gao, K., Liu, T., Zhao, H., Wang, J., Wu, H., Liu, B. & Wang, W. 2013. Aporphine alkaloids: A kind of alkaloids' extract source, chemical constitution and pharmacological actions in different botany: A review. Asian Journal of Chemistry, 25(18): 10015-10027. DOI:

Clarke, G., Ting, K.N., Wiart, C. & Fry, J. 2013. High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants, 2(1): 1-10. DOI:

de la Rosa, L.A., Moreno-Escamilla, J.O., Rodrigo-García, J. & Alvarez-Parrilla, E. 2019. Phenolic compounds. In: Postharvest Physiology and Biochemistry of Fruits and Vegetables. E.M. Yahia (Ed.). Woodhead Publishing. pp. 253-271. DOI:

Dung, N.T., Huong, N.T., Thuy, P.T., Hoan, N.T., Thanh, D.T.M. & Van Trang, N. 2020. Quinolone and isoquinolone alkaloids: The structural-electronic effects and the antioxidant mechanisms. Structural Chemistry, 31(6): 2435-2450. DOI:

Edeoga, H.O., Okwu, D. & Mbaebie, B. 2005. Phytochemical constituents of some Nigerian medicinal plants. African journal of biotechnology, 4(7): 685-688. DOI:

Forman, H.J. & Zhang, H. 2021. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9): 689-709. DOI:

Halvorsen, B.L. & Blomhoff, R. 2011. Validation of a quantitative assay for the total content of lipophilic and hydrophilic antioxidants in foods. Food Chemistry, 127(2): 761-768. 2 DOI:

Hassan, S.H.A., Fry, J.R. & Bakar, M.F.A. 2013. Antioxidant and phytochemical study on pengolaban (Litsea garciae), an edible underutilized fruit endemic to Borneo. Food Science and Biotechnology, 22(5): 1-7. DOI:

Herald, T.J., Gadgil, P. & Tilley, M. 2012. High‐throughput micro plate assays for screening flavonoid content and DPPH‐scavenging activity in sorghum bran and flour. Journal of the Science of Food and Agriculture, 92(11): 2326-2331. DOI:

Irshad, M., Zafaryab, M., Singh, M. & Rizvi, M. 2012. Comparative analysis of the antioxidant activity of Cassia fistula extracts. International Journal of Medicinal Chemistry, 2012: 157125. DOI:

Jose, S.M. & Anilkumar, M. 2021. LCMS/MS analysis and evaluation of anti-inflammatory and antioxidant activities of the polyphenol fraction of Litsea quinqueflora (Dennst.) Suresh. Plant Science Today, 8(4): 865–872. DOI:

Katalinic, V., Milos, M., Kulisic, T. & Jukic, M. 2006. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry, 94(4): 550-557. DOI:

Keypour, S., Mirzania, F. & Farimani, M.M. 2019. Antioxidant activity, total flavonoid and phenolic contents of three different extracts of Hyrcanian reishi. Current Bioactive Compounds, 15(1): 109-113. DOI:

Krishnaveni, M. & Dhanalakshmi, R. 2014. Qualitative and quantitative study of phytochemicals in Muntingia calabura L. leaf and fruit. World Journal of Pharmaceutical Research, 3(6): 1687-1696.

Kuruppu, A.I., Paranagama, P. & Goonasekara, C.L. 2019. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharmaceutical Journal, 27(4): 565-573. DOI:

Lim, T.K. 2012. Litsea garciae. In: Edible Medicinal And Non Medicinal Plants. T.K. Lim (Ed.). Springer. pp. 75-77. DOI:

Liu, C.-M., Kao, C.-L., Wu, H.-M., Li, W.-J., Huang, C.-T., Li, H.-T. & Chen, C.-Y. 2014. Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules, 19(11): 17829-17838. DOI:

Maliński, M.P., Kikowska, M.A., Soluch, A., Kowalczyk, M., Stochmal, A. & Thiem, B. 2021. Phytochemical screening, phenolic compounds and antioxidant activity of biomass from Lychnis flos-cuculi L. in vitro cultures and intact plants. Plants, 10(2): 206. DOI:

Matos, A.L., Bruno, D.F., Ambrósio, A.F. & Santos, P.F. 2020. The benefits of flavonoids in diabetic retinopathy. Nutrients, 12(10): 3169. DOI:

Molyneux, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2): 211-219.

Müller, L., Fröhlich, K., & Böhm, V. 2011. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry, 129(1): 139-148. DOI:

Noureddine, B., Yacine, B. & Fadila, M.-B. 2013. Evaluation of erythrocytes toxicity and antioxidant activity of alkaloids of Fumaria capreolata. International Journal of Pharma and Bio Sciences, 4(2): P770-P776.

Odebiyi, O. & Sofowora, E. 1978. Phytochemical screening of Nigerian medicinal plants II. Lloydia, 41(3): 234.

Opeyemi, R.F., Zaiton, M.S.S., Uddin, A.Q. & Norazian, M.H. 2019. α-glucosidase inhibitory and antioxidant activities of Entada spiralis Ridl.(Sintok) stem bark extracts. Pertanika Journal of Tropical Agricultural Science, 42(1): 139-153.

Chai, P.P.K. 2006. Medicinal Plant of Sarawak Lee Miing Press Sdn Bhd, Kuching. 212 pp.

Panche, A.N., Diwan, A.D. & Chandra, S.R. 2016. Flavonoids: An overview. Journal of Nutritional Science, 5: e47. DOI:

Patle, T.K., Shrivas, K., Kurrey, R., Upadhyay, S., Jangde, R. & Chauhan, R. 2020. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242: 118717. DOI:

Prashanth, G. & Krishnaiah, G. 2014. Chemical composition of the leaves of Azadirachta indica Linn (Neem). International Journal of Advancement in Engineering and Technology, Management and Applied Science, 1(3): 21-31.

Prior, R.L., Wu, X. & Schaich, K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10): 4290-4302. DOI:

Pyrzynska, K. & Pękal, A. 2013. Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Analytical Methods, 5(17): 4288-4295. DOI:

Rafidah, B.H. 2017. Potential Use of Superheated-Steam Treatment in Underutilized Fruit of Engkala (Litsea Garciae) and Evaluation of Its Antioxidant Capacity: 未利用果実アンカラへの過熱水蒸気処理の潜在的な利用とその酸化防止能力の評価 Kyushu Institute of Technology/九州工業大学].

Saleem, H., Htar, T.T., Naidu, R., Nawawi, N.S., Ahmad, I., Ashraf, M. & Ahemad, N. 2019. Biological, chemical and toxicological perspectives on aerial and roots of Filago germanica (L.) huds: Functional approaches for novel phyto-pharmaceuticals. Food and Chemical Toxicology, 123: 363-373. DOI:

Salleh, W.M.N.H.W.A. & Farediah. 2017. Alkaloids from the genus Dehaasia: Phytochemistry and biological activities. Journal of Applied Pharmaceutical Science, 7(3): 207-211.

San Miguel-Chávez, R. 2017. Phenolic antioxidant capacity: A review of the state of the art. In: Phenolics Compounds. M. Soto-Hernandez, M. Palma-Tenango & M.d. Rosario (Eds.). IntechOpen. DOI:

Sarian, M.N., Ahmed, Q.U., Mat So’ad, S.Z., Alhassan, A.M., Murugesu, S., Perumal, V., Syed Mohamad, S.N.A., Khatib, A. & Latip, J. 2017. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International, 2017: 8386065. DOI:

Singh, V. & Kumar, R. 2017. Study of phytochemical analysis and antioxidant activity of Allium sativum of Bundelkhand region. International Journal of Life-Sciences Scientific Research, 3(6): 1451-1458. DOI:

Spiegel, M., Kapusta, K., Kołodziejczyk, W., Saloni, J., Żbikowska, B., Hill, G.A., & Sroka, Z. 2020. Antioxidant activity of selected phenolic acids–ferric reducing antioxidant power assay and QSAR analysis of the structural features. Molecules, 25(13): 3088. DOI:

Tiwari, P. & Gupta, R. 2020. Preliminary phytochemical screening of bark (powder) extracts of Ficus religiosa (peepal) plant. International Journal of Research and Development in Pharmacy & Life Sciences, 9(1): 1-6.

Uma, K.S., Parthiban, P. & Kalpana, S. 2017. Pharmacognostical and preliminary phytochemical screening of Aavaarai Vidhai Chooranam. Asian Journal of Pharmaceutical and Clinical Research, 10(10): 111-116. DOI:

Vasco, C., Ruales, J. & Kamal-Eldin, A. 2008. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111(4): 816-823. DOI:

Vimalkumar, C., Hosagaudar, V., Suja, S., Vilash, V., Krishnakumar, N. & Latha, P. 2014. Comparative preliminary phytochemical analysis of ethanolic extracts of leaves of Olea dioica Roxb., infected with the rust fungus Zaghouania oleae (EJ Butler) Cummins and non-infected plants. Journal of Pharmacognosy and Phytochemistry, 3(4): 69-72.

Wang, L. & Weller, C.L. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6): 300-312. DOI:

Wang, Y.-S., Wen, Z.-Q., Li, B.-T., Zhang, H.-B. & Yang, J.-H. 2016. Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: An update. Journal of Ethnopharmacology, 181: 66-107. DOI:

Wang, Y.Q., Li, S.J., Zhuang, G., Geng, R.H. & Jiang, X. 2017. Screening free radical scavengers in Xiexin Tang by HPLC‐ABTS‐DAD‐Q‐TOF/MS. Biomedical Chromatography, 31(11): e4002. DOI:

Wulandari, I., Kusuma, I. & Kuspradini, H. 2018. Antioxidant and antibacterial activity of Litsea garciae. IOP Conference Series: Earth and Environmental Science, 144: 012024. DOI:

Xiao, F., Xu, T., Lu, B. & Liu, R. 2020. Guidelines for antioxidant assays for food components. Food Frontiers, 1(1): 60-69. DOI:

Yen, K., Din, L., Syah, Y., Zakaria, Z., Ismail, N. & Hakim, E. 2008. Coumarins and flavonoids from leaves of Cryptocarya nigra (Lauraceae) and their cytotoxic activity against murine leukemia P-388 cells. ACGC Chemical Research Communications, 22: 57-60.



How to Cite




Research Articles