COMBINING IN VITRO AND IN OVO ASSAYS TO SCREEN FOR ANTI-CANCER AND ANTI-ANGIOGENIC EFFECTS OF THE LEAF EXTRACTS OF Mallotus cumingii Mull.Arg. (EUPHORBIACEAE)

https://doi.org/10.55230/mabjournal.v51i1.2175

Authors

  • ANGELO JUD DE PAZ CRUZ Animal Developmental Biology Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines 1101 https://orcid.org/0000-0001-6850-6591
  • JENINA KATRINA GALVEZ RAYMUNDO Mammalian Cell Culture Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines 1101 https://orcid.org/0000-0002-0832-4128
  • SONIA DONALDO JACINTO Mammalian Cell Culture Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines 1101 https://orcid.org/0000-0002-2926-1293
  • JAREL ELGIN TOLENTINO Animal Developmental Biology Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines 1101; Science Education Institute, Department of Science and Technology, Bicutan, Taguig City Philippines 1631 https://orcid.org/0000-0002-0749-116X
  • LERRIE ANN DE GUIA IPULAN-COLET Animal Developmental Biology Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines 1101; Mammalian Cell Culture Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines 1101 https://orcid.org/0000-0003-3448-9134

Keywords:

Phytochemical analysis, anti-cancer, anti-angiogenic, Philippines

Abstract

Treatment for cancer is often challenging and various interventions may have detrimental effects. Due to this, the development of less harmful alternatives such as herbal medicine is essential. The present study aims to determine the leaf phytoconstituents present and the bioactivities of Mallotus cumingii Müll.Arg against cancer cells through the utilization of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay and anti-angiogenesis through CAM or chorioallantoic membrane assay. The leaf extracts obtained three fractions namely, methanolic crude (MCME) extracts, hexane extracts (MCHE), and ethyl acetate extracts (MCEA), and were tested on HCT-116 (human colorectal cancer cell line) for in vitro cytotoxicity, and blood vessel density and branching through in ovo CAM assay. Phytochemical analysis showed that the M. cumingii fractions contain phenolic compounds, terpenoids, cardiac glycosides, flavonoids, and saponins. For in vitro set-up, MCME of M. cumingii were separated into MCHE and MCEA partitions and were tested against HCT-116 and obtained an IC50 value of < 30 μg/mL, which is deemed active in cytotoxicity. For in ovo set-up, two concentrations of each extract were applied to the duck eggs. Blood vessel density and number of branching points were measured through the ImageJ analysis. All extracts exhibited anti-angiogenic activity, either by decreasing blood vessel density or the number of branching points. Overall, the study demonstrates the potential of M. cumingii as a source of therapeutic agents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abotaleb, M., Liskova, A., Kubatka, P. & Büsselberg, D. 2020. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules, 10(2): 221. DOI: https://doi.org/10.3390/biom10020221

Ahmad, S., Ullah, F., Ayaz, M., Zeb, A., Ullah, F. & Sadiq, A. 2016. Antitumor and anti-angiogenic potentials of isolated crude saponins and various fractions of Rumexhastatus D. Don. Biological Research, 49: 1-9. DOI: https://doi.org/10.1186/s40659-016-0079-2

Aliomrani, M., Jafarian, A. & Zolfaghari, B. 2017. Phytochemical screening and cytotoxic evaluation of Euphorbia turcomanica on Hela and HT-29 tumor cell lines. Advanced Biomedical Research, 6: 68. DOI: https://doi.org/10.4103/2277-9175.192734

Arnold, M., Sierra, M.S., Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. 2017. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 66(4): 683-691. DOI: https://doi.org/10.1136/gutjnl-2015-310912

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6): 394-424. DOI: https://doi.org/10.3322/caac.21492

Betancur-Galvis, L.A., Morales, G.E., Forero, J.E. & Roldan, J. 2002. Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus. Memórias do Instituto Oswaldo Cruz, 97: 541-546. DOI: https://doi.org/10.1590/S0074-02762002000400017

Cancer Research United Kingdom. 2020. How we spend your money. URL https://www.cancerresearchuk.org/about-us/our-organisation/how-we-spend-your-money. (accessed 06.06.21).

Dapat, E., Jacinto, S. & Efferth, T. 2013. A phenolic ester from Aglaia loheri leaves reveals cytotoxicity towards sensitive and multidrug-resistant cancer cells. BMC Complementary and Alternative Medicine, 13: 286. DOI: https://doi.org/10.1186/1472-6882-13-286

Doughari, J.H. 2012. Phytochemicals: Extraction methods, basic structures and mode of action as potential chemotherapeutic agents. In: Phytochemicals - A Global Perspective of Their Role in Nutrition and Health. R. Rao (Ed.). IntechOpen.

Farnsworth, N.R., Akerele, O., Bingel, A.S., Soejarto, D.D. & Guo, Z. 1985. Medicinal plants in therapy. Bulletin of the World Health Organization, 63(6): 965-981.

Folkman, J. 2002. Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology, 29(6): 15-18. DOI: https://doi.org/10.1016/S0093-7754(02)70065-1

Franco, S.S., Szczesna, K., Iliou, M.S., Al-Qahtani, M., Mobasheri, A., Kobolák, J. & Dinnyés, A. 2016. In vitro models of cancer stem cells and clinical applications. BMC Cancer, 16: 738. DOI: https://doi.org/10.1186/s12885-016-2774-3

Guedes, É.A., Silva, T.G.D., Aguiar, J.S., Barros, L.D.D., Pinotti, L.M. & Sant'Ana, A.E. 2013. Cytotoxic activity of marine algae against cancerous cells. Revista Brasileira de Farmacognosia, 23: 668-673. DOI: https://doi.org/10.1590/S0102-695X2013005000060

Hansen, T.M., Singh, H., Tahir, T.A. & Brindle, N.P. 2010. Effects of angiopoietins-1 and-2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface. Cellular Signalling, 22(3): 527-532. DOI: https://doi.org/10.1016/j.cellsig.2009.11.007

Harborne, J.B. 1998. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 3rd Ed. London, UK. 302 pp.

Hartwell, J.L. 1970. Plants used against cancer. A survey. Lloydia, 33: 97-194.

He, M.F., Liu, L., Ge, W., Shaw, P.C., Jiang, R., Wu, L.W. & But, P.P.H. 2009. Antiangiogenic activity of Tripterygium wilfordii and its terpenoids. Journal of Ethnopharmacology, 121(1): 61-68. DOI: https://doi.org/10.1016/j.jep.2008.09.033

Hicklin, D.J. & Ellis, L.M. 2005. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Journal of Clinical Oncology, 23(5): 1011-1027. DOI: https://doi.org/10.1200/JCO.2005.06.081

Hyodo, I., Suzuki, H., Takahashi, K., Saito, Y., Tanaka, S., Chiu, H.M., Kim, N.K., Li, J., Lim R, Villalon, A. & Boku, N. 2010. Present status and perspectives of colorectal cancer in Asia: colorectal cancer working group report in 30th Asia-Pacific cancer conference. Japanese Journal of Clinical Oncology, 40: 38-43. DOI: https://doi.org/10.1093/jjco/hyq125

Jia, J., Zhu, F., Ma, X., Cao, Z.W., Li, Y.X. & Chen, Y.Z. 2009. Mechanisms of drug combinations: interaction and network perspectives. Nature reviews Drug discovery, 8(2):111-128. DOI: https://doi.org/10.1038/nrd2683

Jiang, X., Cao, Y., von Gersdorff Jørgensen, L., Strobel, B.W., Hansen, H.C.B. & Cedergreen, N. 2018. Where does the toxicity come from in saponin extract? Chemosphere, 204: 243-250. DOI: https://doi.org/10.1016/j.chemosphere.2018.04.044

Jiang, Z., Kempinski, C. & Chappell, J. 2016. Extraction and analysis of terpenes/terpenoids. Current Protocols in Plant Biology, 1(2): 345-358. DOI: https://doi.org/10.1002/cppb.20024

Jokhadze, M., Eristavi, L., Kutchukhidze, J., Chariot, A., Angenot, L., Tits, M., Jansen, O. & Frédérich, M. 2007. In vitro cytotoxicity of some medicinal plants from Georgian Amaryllidaceae. Phytotherapy Research, 21(7):622-624. DOI: https://doi.org/10.1002/ptr.2130

Kulju, K.K.M., Sierra, S.E.C. & Van Welzen, P.C. 2007. Re-shaping Mallotus [part 2]: inclusion of Neotrewia, Octospermum and Trewia in Mallotus ss (Euphorbiaceae ss). Blumea-Biodiversity, Evolution and Biogeography of Plants, 52(1): 115-136. DOI: https://doi.org/10.3767/000651907X612364

Maioli, E. & Valacchi, G. 2010. Rottlerin: Bases for a possible usage in psoriasis. Current Drug Metabolism, 11(5): 425-430. DOI: https://doi.org/10.2174/138920010791526097

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2): 55-63. DOI: https://doi.org/10.1016/0022-1759(83)90303-4

Mukherjee, A.K., Basu, S., Sarkar, N. & Ghosh, A.C. 2001. Advances in cancer therapy with plant based natural products. Current Medicinal Chemistry, 8(12): 1467-1486. DOI: https://doi.org/10.2174/0929867013372094

Onwukaeme, D.N., Ikuegbvweha, T.B. & Asonye, C.C. 2007. Evaluation of phytochemical constituents, antibacterial activities and effect of exudate of Pycanthus angolensis Weld Warb (Myristicaceae) on corneal ulcers in rabbits. Tropical Journal of Pharmaceutical Research, 6(2): 725-730. DOI: https://doi.org/10.4314/tjpr.v6i2.14652

Patel, A. 2020. Benign vs malignant tumors. JAMA Oncology, 6(9): 1488. DOI: https://doi.org/10.1001/jamaoncol.2020.2592

Qian, M., Yi, L., Song-Lin, L., Jie, Y.A., Ping-Hu, Z. & Qiang, W. 2014. Chemical profiles and anticancer effects of saponin fractions of different polarity from the leaves of Panax notoginseng. Chinese Journal of Natural Medicines, 12(1): 30-37. DOI: https://doi.org/10.1016/S1875-5364(14)60006-6

Rajabi, M. & Mousa, S.A. 2017. The role of angiogenesis in cancer treatment. Biomedicines, 5(2): 34. DOI: https://doi.org/10.3390/biomedicines5020034

Ren, W., Qiao, Z., Wang, H., Zhu, L. & Zhang, L. 2003. Flavonoids: Promising anticancer agents. Medicinal Research Reviews, 23(4): 519-534. DOI: https://doi.org/10.1002/med.10033

Rodriguez, A.M.H., Reyes, M.F., Lim, N.N.S., Tolentino, J.E.M. & Ipulan-Colet, L.A. 2021. Effects of Binúñga [Macaranga tanarius (L.) Müll. Arg.] crude leaf extract on cancer cells, angiogenesis, early implantation, and embryogenesis. Philippine Journal of Science, 150(2): 461-471.

See, I., Ee, G.C.L., Mah, S.H., Jong, V.Y.M. & Teh, S.S. 2017. Effect of solvents on phytochemical concentrations and antioxidant activity of Garcinia benthamiana stem bark extracts. Journal of Herbs, Spices & Medicinal Plants, 23(2): 117-127. DOI: https://doi.org/10.1080/10496475.2016.1272523

Sharma, V. 2011. A polyphenolic compound rottlerin demonstrates significant in vitro cytotoxicity against human cancer cell lines: isolation and characterization from the fruits of Mallotus philippinensis. Journal of Plant Biochemistry and Biotechnology, 20: 190-195. DOI: https://doi.org/10.1007/s13562-011-0045-6

Tabruyn, S.P. & Griffioen, A.W. 2008. NF-κB: a new player in angiostatic therapy. Angiogenesis, 11(1): 101-106. DOI: https://doi.org/10.1007/s10456-008-9094-4

Thurston, G. & Daly, C. 2012. The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harbor Perspectives in Medicine, 2(9): a006550. DOI: https://doi.org/10.1101/cshperspect.a006650

Ting, F., Sacdalan, D., Tampo, M., Apellido, R.T., Monroy 3rd, H.J., Sacdalan, M., Sacdalan, D.L., & written on behalf of the University of the Philippines, Philippine General Hospital Colorectal Polyp and Cancer Study Group. 2020. Treatment outcomes of patients with colorectal cancer enrolled in a comprehensive benefits program of the National Insurance System in the Philippines: Data from the pilot site. JCO Global Oncology, 6: 35–46. DOI: https://doi.org/10.1200/JGO.19.00332

Tolentino, J.E., Nera, A.D., Roco, M.R., Beltran, N. & Dapat, E. 2021. Qualitative phytochemical screening, antibacterial, antioxidant and cytotoxicity activities of the leaf extracts of Diospyros philippinensis A.DC. (Ebenaceae). Research Journal of Chemistry and Environment, 25(10): 84-89. DOI: https://doi.org/10.25303/2510rjce8489

Weng, X.C. & Huang, Y. 2014. Relationship structure-antioxidant activity of hindered phenolic compounds. Grasas y Aceites, 65(4): e051. DOI: https://doi.org/10.3989/gya.0225141

Widyawati, P.S., Budianta, T.D.W., Kusuma, F.A. & Wijaya, E.L. 2014. Difference of solvent polarity to phytochemical content and antioxidant activity of Pluchea indicia less leaves extracts. International Journal of Pharmacognosy and Phytochemical Research, 6(4): 850-855.

Winnicka, K., Bielawski, K. & Bielawska, A. 2006. Cardiac glycosides in cancer research and cancer therapy. Acta Poloniae Pharmaceutica, 63(2): 109-115.

Published

31-03-2022

How to Cite

CRUZ, A. J. D. P., RAYMUNDO, J. K. G., JACINTO, S. D., TOLENTINO, J. E. ., & IPULAN-COLET, L. A. D. G. (2022). COMBINING IN VITRO AND IN OVO ASSAYS TO SCREEN FOR ANTI-CANCER AND ANTI-ANGIOGENIC EFFECTS OF THE LEAF EXTRACTS OF Mallotus cumingii Mull.Arg. (EUPHORBIACEAE) . Malaysian Applied Biology, 51(1), 73–82. https://doi.org/10.55230/mabjournal.v51i1.2175

Issue

Section

Research Articles