• NOR KHAIRUNNISA MOHAMAD FATHI Faculty of Resources Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • MOHAMAD FHAIZAL MOHAMAD BUKHORI Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia https://orcid.org/0000-0002-7395-7036
  • SHARIFAH MONA ABD AZIZ ABDULLAH Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • RAFEAH WAHI Faculty of Resources Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • MOHD ALHAFIIZH ZAILANI Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • MELISA MALINI RAJA GOPAL Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia


Chilli, completely randomized design, crop yield, Kulai, sago bark, soil fertility


Applying biochar in crop farming or agriculture activity generally increases productivity through improved soil fertility and water holding capacity.  However, there is a lack of empirical data on the effects of sago bark waste-derived biochar on the growth media of Capsicum annuum L. This work, reported the effect of sago bark biochar and acid-base treated sago bark biochar on Capsicum annuum L. var. Kulai growth media fertility. The plant growth study was carried out using completely random design experimental layouts with five replicates and 8 treatments at various biochar application rates (0.5,1.5, & 3.0%, w/w). Results showed that plant grown with 1.5% sago bark biochar has the highest number of the leaf (122.90). Plant with 1.5% acid-base treated sago bark biochar showed a significantly (p<0.05) higher number of flower buds (1.90) and stem height (69.00 cm) during 4 months of the vegetative period. Meanwhile, plants with 3% acid-base treated sago bark biochar obtained the highest yield of fruit fresh weight (67.64 g). In general, acid-base treated sago bark biochar application increase the yield of Capsicum annuum L. var. Kulai.


Download data is not yet available.


Metrics Loading ...


Ahmad, N.F., Alias, A.B., Talib, N., Rashid, Z. & Ghani, W.A. 2018. Characteristics of rice husk biochar blended with coal fly ash for potential sorption material. Malaysian Journal of Analytical Sciences, 22(2): 326-332. DOI: https://doi.org/10.17576/mjas-2018-2202-19

Ajema, L. 2018. Effects of biochar application on beneficial soil organism review. International Journal of Research Studies in Science, Engineering and Technology, 5(5): 9-18.

Amaral, H.D.D., Situmeang Y. & Suarta, M. 2019. The effects of compost and biochar on the growth and yield of red chilli plants. Journal of Physics: Conference Series, 1402(3): 1-7. DOI: https://doi.org/10.1088/1742-6596/1402/3/033057

Amin, N., Sabli, N., Izhar, S. & Yoshida, H. 2019. Sago wastes and its applications. Pertanika Journal of Science and Technology, 27(4): 1841-1862.

Batista, E.M.C.C., Shultz, J., Matos, T.T.S., Fornari, M.R., Ferreira, T.M., Szpoganicz, B., De Freitas, R.A. & Mangrich, A.S. 2018. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Scientific Reports, 8(1): 1-9. DOI: https://doi.org/10.1038/s41598-018-28794-z

Berek, A.K. 2019. The potential of biochar as an acid soil amendment to support Indonesian food and energy security - A review. Tropical Agricultural Science, 42(2): 745-759.

Bush, M.R., Heitstuman, M.D. & Hammond, L. 2016. Vegetables: Growing peppers in home gardens. Washington State University Extension.

Carter, S., Shackley, S., Sohi, S., Suy, T.B. & Haefele, S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3: 404-418. DOI: https://doi.org/10.3390/agronomy3020404

Daros, R. 2019. Grow your own food. The Malaysian Reserve. URL https://themalaysianreserve.com/2019/08/15/grow-your-own-food/

FAO Statistics Division. 2020. Food and Agriculture Organization of the United Nations URL http://www.fao.org/faostat/en/#data/QC/visualize

Gangwar, D.P. & Baskar, M. 2019. Texture determination of soil by hydrometer method for forensic purpose.

Gonzaga, M.I.S., Mackowiak, C., Almeida, A.Q.de, Carvalho, J.I.T. & Andrade, K.R. 2018. Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. Catena, 162: 414-420. DOI: https://doi.org/10.1016/j.catena.2017.10.018

Hashmi, S., Younis, U., Danish, S. & Munir, T.M. 2019. Pongamia pinnata L. leaves biochar increased growth and pigments syntheses in Pisum sativum L. exposed to nutritional stress. Agriculture, 9(153): 1-13. https://doi.org/10.3390/agriculture9070153 DOI: https://doi.org/10.3390/agriculture9070153

Huang, W., Lee, D. & Huang, C. 2021. Modification on biochars for applications: A research update. Bioresource Technology, 319(124100): 1-11. DOI: https://doi.org/10.1016/j.biortech.2020.124100

Jenberu, G.A. 2017. Biochar, Compost and Biochar-compost: Effects on Crop Performance, Soil Quality and Greenhouse Gas Emissions in Tropical Agricultural Soils (Ph.D). James Cook University.

Khandaker, M.M., Rohani, F., Dalorima, T. & Mat, N. 2017. Effects of different organic fertilisers on growth, yield and quality of Capsicum annuum L. var. Kulai (Red Chili Kulai). Biosciences, Biotechnology Research Asia, 14(1): 185-192. DOI: https://doi.org/10.13005/bbra/2434

Mahdian, S., Mohidin, H., Man, S., Kanang, Kevin, D. & Ali, A.S. 2021. Growth performance of sweet corn (Zea mays L.) on the mineral soil amended with sago waste biochar. Scientific Research Journal, 18(1): 45-56. DOI: https://doi.org/10.24191/srj.v18i1.11395

Mahidin, M.U. 2020. Supply and utilization accounts selected agricultural commodities Malaysia 2015-2019. Department of Statistics Malaysia Official Portal. URL https://www.dosm.gov.my/v1/index.php

Mohamad Fathi, N.K., Abd Aziz Abdullah, S.M., Mohamad Bukhori, M.F., Wahi, R. & Zailani, M.A. 2021. Physicochemical properties of sago bark biochar and its potential as plant growth media. Malaysian Journal of Analytical Sciences, 25(4): 622-636.

Ndor, E., Ogara, J.I., Bako, D.A. & Osuagbalande, J.A. 2016. Effect of biochar on macronutrients release and plant growth on degraded soil of Lafia, Nasarawa State, Nigeria. Asian Research Journal of Agriculture, 2(3): 1-8. DOI: https://doi.org/10.9734/ARJA/2016/30926

Pokovai, K., Tóth, E. & Horel, Á. 2020. Growth and photosynthetic response of Capsicum annuum L. in Biochar amended soil. Applied Sciences, 10(12): 4111. https://doi.org/10.3390/app10124111 DOI: https://doi.org/10.3390/app10124111

Riaz, M., Khan, M., Ali, S., Khan, M.D., Ahmad, R., Khan, M.J., & Rizwan, M. 2018. Sugarcane waste straw biochar and its effects on calcareous soil and agronomic traits of okra. Arabian Journal of Geosciences, 11(23): 752. DOI: https://doi.org/10.1007/s12517-018-4113-2

Sahin, O., Taskin, M.B., Kaya, E.C. & Gunes, A. 2017. Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management, 33: 447-456. DOI: https://doi.org/10.1111/sum.12360

Shi, W., Ju, Y., Bian, R., Li, L., Joseph, S., Mitchell, D.R.G., Munroe, P., Taherymoosavi, S. & Pan, G. 2020. Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, 701: 134424. DOI: https://doi.org/10.1016/j.scitotenv.2019.134424

Situmeang, Y.P. & Suarta, M. 2016. The effect of biochar bamboo on growth and results of kangkung (Ipomoea reptans P.). Journal of Biological and Chemical Research, 35(2): 463-468.

Sukartono, W.H., Kusuma, Z. & Nugrobo, W.H. 2011. Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia. Journal of Tropical Agriculture, 49(1-2): 47-52.

Syuhada, A.B., Shamshuddin, J., Fauziah, A.B., Rosenani, A. & Arifin, A. 2016. Biochar as soil amendment: Impact on chemical properties and corn nutrient uptake in a podzol. Canadian Journal of Soil Science, 96(4): 400-412. DOI: https://doi.org/10.1139/cjss-2015-0044

Tan, I.A.W., Abdullah, M.O., Lim, L.L.P. & Yeo, T.H.C. 2017. Surface modification and characterization of coconut shell-based activated carbon subjected to acidic and alkaline treatments. Journal of Applied Science & Process Engineering, 4(2): 186-194. DOI: https://doi.org/10.33736/jaspe.435.2017

University of Georgia College of Agricultural & Environmental Sciences. 2021. Plant analysis handbook: Nutrient content of plants. URL https://aesl.ces.uga.edu/publications/ plant/Nutrient.html

University of Minnesota Extension. 2021. Growing peppers in home gardens. URL https://extension.umn.edu/vegetables/growing-peppers

Upadhyay, K.P. & Neupane, J.D. 2020. Response of potato (Solanum tuberosum L.) to the application rates of biochar and number of irrigations. Tropical Agrobiodiversity, 1(1): 37-41. DOI: https://doi.org/10.26480/trab.01.2020.37.41

Vaccari, F.P., Maienza, A., Miglietta, F., Baronti, S., Lonardo, S. Di, Giagnoni, L., Lagomarsino, A., Pozzi, A., Pusceddu, E., Ranieri, R., Valboa, G. & Genesio, L. 2015. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems and Environment, 207: 163-170. DOI: https://doi.org/10.1016/j.agee.2015.04.015

Wahi, R., Abdullah, L.C., Mobarekeh, M.N., Ngaini, Z., Choong, T. & Yaw, S. 2017. Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent. Journal of Environmental Chemical Engineering, 5(1): 170-177. DOI: https://doi.org/10.1016/j.jece.2016.11.038

Whye, L., Lim, K., Chung, H.H. & Hussain, H. 2019. Sago palm (Metroxylon sagu Rottb.): Now and beyond. Tropical Agricultural Science, 42(2): 435-451.

Wisnubroto, E.I., Utomo, W.H. & Indrayatie, E.R. 2017. Residual effect of biochar on growth and yield of red chili (Capsicum annuum L.). Journal of Advanced Agricultural Technologies, 4(1): 28-31. DOI: https://doi.org/10.18178/joaat.4.1.28-31

Yilangai, R., Manu, S., Pineau, W., Mailumo, S. & Okeke-Agulu, K. 2014. The effect of biochar and crop veil on growth and yield of tomato (Lycopersicum esculentus Mill) in Jos, North central Nigeria. Current Agriculture Research Journal, 2(1): 37-42. DOI: https://doi.org/10.12944/CARJ.2.1.05

Zainul, A., Werner, K., Bernhard, H., Bilquees, G. & Ajmal, K.M. 2020. Impact of a biochar or a biochar-compost mixture on water relation, nutrient uptake and photosynthesis of Phragmites karka. Pedosphere, 30(4): 466-477. DOI: https://doi.org/10.1016/S1002-0160(17)60362-X

Zhao, L., Zheng, W., Mašek, O., Chen, X., Gu, B., Sharma, B.K. & Cao, X. 2017. Roles of phosphoric acid in biochar formation: Synchronously improving carbon retention and sorption capacity. Journal of Environmental Quality, 46(2): 393-401. DOI: https://doi.org/10.2134/jeq2016.09.0344



How to Cite

MOHAMAD FATHI, N. K., MOHAMAD BUKHORI, M. F., ABD AZIZ ABDULLAH, S. M., WAHI, R., ZAILANI, M. A. ., & RAJA GOPAL, M. M. (2022). EFFECT OF SAGO BARK BIOCHAR APPLICATION ON Capsicum annuum L. var. Kulai GROWTH AND FRUIT YIELD. Malaysian Applied Biology, 51(3), 127–135. https://doi.org/10.55230/mabjournal.v51i3.2191



Research Articles