The Impact of Trichoderma spp. on Agriculture and Their Identification


  • Feodora Grace Japanis Precision Agriculture and Genomics Department, FGV Innovation Centre (Biotechnology), FGV R&D Sdn. Bhd., 71760 Nilai, Negeri Sembilan, Malaysia
  • Sharmilah Vetaryan Precision Agriculture and Genomics Department, FGV Innovation Centre (Biotechnology), FGV R&D Sdn. Bhd., 71760 Nilai, Negeri Sembilan, Malaysia
  • Naalven Kumar Kumara Raja Tissue Culture Research Department, FGV Innovation Centre (Biotechnology), FGV R&D Sdn. Bhd., 71760 Nilai, Negeri Sembilan, Malaysia
  • Mohd Azinuddin Ahmad Mokhtar Oil Palm Breeding Department, Tun Razak Agricultural Research Centre (PPPTR), FGV R&D Sdn. Bhd., 26400 Pahang, Malaysia
  • Elya Masya Mohd Fishal Crop Protection and Biosolution Department, FGV Innovation Centre (Beneficial Microbes), 71760 Bandar Enstek, Negeri Sembilan, Malaysia


biocontrol agent, biofertilizer, molecular technology, plant pathogens, Trichoderma


Fungi belonging to the genus Trichoderma were discovered in the late 18th century and they have been utilized ever since their biocontrol potential was uncovered. Trichoderma species have greatly assisted the blooming of agricultural industries due to their aggressive characteristics against plant pathogens. Their role as a biocontrol agent is owed to their mode of mechanisms: induction of the plant’s defence system, mycoparasitism, the production of secondary metabolites, and rhizosphere competence. Meanwhile, their role as a biofertilizer became evident when studies conducted hitherto showed that they could increase plant’s nutrient uptake, improve the yield of crops, enhance plant’s tolerance to external stresses, and induce the germination of seeds. Since this genus is hyperdiverse, accurate identification of them is indispensable. In the past, Trichoderma spp. were identified via their morphological characteristics. However, the emergence of molecular technology has made the identification of Trichoderma isolates more precise, explicit and rapid. Hence, this paper briefly reviews the accumulated knowledge in respect of this genus. Nevertheless, an extensive study must be done in order to explore the potential in improving the natural strains of Trichoderma.


Download data is not yet available.


Metrics Loading ...


Abdul, R.J., Ahmad, H., Ramdhan, K., Idris, A.B., Abd, R.S., Aminumrashid & Fauzi, I. 2004. Mechanical Trunk Injection for Control of Ganoderma. MPOB TT No. 215, ISSN: 1511-7871.

Adams, P., De-Leij, F.A.A.M. & Lynch, J.M. 2007. Trichoderma harzianum Rifai 1295–22 mediates growth promotion of Crack Willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microbial Ecology, 54(2): 306–313.

Ahmad, P., Hashem, A., Abd-Allah, E.F., Alqarawi, A.A., John, R., Egamberdieva, D. & Gucel, S. 2015. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science, 6.

Ali Nusaibah, S. & Musa, H. 2019. A Review Report on the mechanism of Trichoderma spp. as biological control agent of the basal stem rot (BSR) disease of Elaeis guineensis. Trichoderma - The Most Widely Used Fungicide.

Alias, N., Mahadi, N.M., Abdul Murad, A.M., Abu Bakar, F.D. & Md Illias, R. 2011. Three dimensional structure prediction of recombinant endochitinase from Trichoderma virens UKM-1. Journal of Agrobiotech, 2: 83–92.

Bae, H., Sicher, R.C., Kim, M.S., Kim, S.H., Strem, M.D., Melnick, R.L. & Bailey, B.A. 2009. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60: 3279-3295.

Baiyee, B., Pornsuriya, C., Ito, S.I. & Sunpapao, A. 2019. Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biological Control, 129: 195–200.

Bezuidenhout, J., Rensburg, L. & Jansen van Rensburg, P. 2012. Molecular similarity between gibberellic acid and gliotoxin: Unravelling the mechanism of action for plant growth promotion by Trichoderma harzianum. Journal of Agricultural Science and Technology, 6: 703-712.

Bebber, D. P. 2015. Range-expanding pests and pathogens in a warming world. Annual Review of Phytopathology, 53: 335-356.

Bissett, J. 1991. A revision of the genus Trichoderma. II. Infrageneric classification. Canadian Journal of Botany, 69(11): 2357–2372.

Bowen, J.K., Franicevic, S.C., Crowhurst, R.N., Templeton, M.D. & Stewart, A. 1996. Differentiation of a specific Trichoderma biological control agent by restriction fragment length polymorphism (RFLP) Analysis. New Zealand Journal of Crop and Horticultural Science, 24(3): 207-217.

Björkman, T., Blanchard, L.M. & Harman, G.E. 1998. Growth Enhancement of shrunken-2 (sh2) Sweet Corn by Trichoderma harzianum 1295–22: Effect of environmental stress. Journal of the American Society for Horticultural Science, 123(1): 35–40.

Brotman, Y., Landau, U., Cuadros-Inostroza, L., Takayuki, T., Fernie, A.R., Chet, I., Viterbo, A. & Willmitzer, L. 2013. Trichoderma-Plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 9(3): e1003221.

Cai, F. & Druzhinina, I.S. 2021. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity, 107(1): 1–69.

Chaverri, P. & Samuels, G.J. 2003a. Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): Species with green ascospores. Studies in Mycology, 48: 1-116.

Chaverri, P., Castlebury, L.A., Overton, B.E. & Samuels, G.J. 2003b. Hypocrea/Trichoderma: Species with conidiophore elongations and green conidia. Mycologia, 95(6): 1100.

Chong, K. P., Lum, M. S., Foong, C. P., Wong, C. M. V. L., Atong, M. & Rossall, S. 2011. First identification of Ganoderma boninense isolated from Sabah based on PCR and sequence homology. African Journal of Biotechnology, 10: 14718-14723.

Contreras-Cornejo, H.A., Macías-Rodríguez, L., del-Val, E. & Larsen, J. 2018. The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Applied Soil Ecology, 124: 45–53.

Contreras-Cornejo, H.A., Macías-Rodríguez, L., del-Val, E. & Larsen, J. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92(4): fiw036.

Contreras-Cornejo, H.A., Macías-Rodríguez, L., Beltrán-Peña, E., Herrera-Estrella, A. & López-Bucio, J. 2011. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signaling & Behavior, 6(10): 1554–1563.

Colombi, T. & Keller, T. 2019. Developing strategies to recover crop productivity after soil compaction—a plant eco-physiological perspective. Soil and Tillage Research, 191: 156-161.

De Palma, M., Salzano, M., Villano, C., Aversano, R., Lorito, M., Ruocco, M., Docimo, T., Piccinelli, A.L., D’Agostino, N. & Tucci, M. 2019. Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Horticulture Research, 6(1).

Devi, T.P., Prabhakaran, N. & Kamil, D. 2017a. Development of Species Specific Markers for the identification of Trichoderma asperellum and Trichoderma harzianum. Vegetos- An International Journal of Plant Research, 30(suppl): 94.

Devi, D., Sreenivasulu, Y. & Rao, B. 2017b. Protective role of Trichoderma logibrachiatum (WT2) on lead induced oxidative stress in Helianthus annus L. Indian Journal of Experimental Biology, 55: 235-241.

Dixit, P., Mukherjee, P.K., Ramachandran, V. & Eapen, S. 2011a. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum. PLoS ONE, 6(1): e16360.

Dixit, P., Mukherjee, P.K., Sherkhane, P.D., Kale, S.P. & Eapen, S. 2011b. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. Journal of Hazard Mater, 192: 270-6.

Dodd, S.L., Hill, R.A. & Steward, A. 2004. Monitoring the Survival and Spread of the Biocontrol Fungus Trichoderma atroviride (C65) on Kiwifruit Using a Molecular Marker. Australasian Plant Pathology, 33(2): 189-196.

Doni, F., Zain, C.R.C.M., Isahak, A., Fathurrahman, F., Anhar, A., Mohamad, W.N.W., Yusoff, W.M.W. & Uphoff, N. 2017. A simple, efficient, and farmer-friendly Trichoderma-based biofertilizer evaluated with the SRI rice management system. Organic Agriculture, 8(3): 207–223.

Druzhinina, I. & Kubicek, C.P. 2005. Species Concept and Biodiversity in Trichoderma and Hypocrea: From aggregate species to species clusters. Journal of Zhejiang University Science, 6B: 100-112.

Druzhinina, I.S., Kopchinskiy, A.G., Komoń, M., Bissett, J., Szakacs, G. & Kubicek, C.P. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology, 42(10): 813-828.

Fahmi, A.I. & Eissa, R.A. 2016. Identification of Trichoderma spp. by DNA barcode and screening for cellulolytic activity. Journal of Microbial & Biochemical Technology, 8(3).

Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J. & Vicente, O. 2015. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Frontiers in Plant Science, 6.

Frías De León, M.G., Arenas López, G., Taylor, M.L., Acosta Altamirano, G. & Reyes-Montes, M. 2011. Development of specific sequence-characterized amplified region markers for detecting Histoplasma capsulatum in clinical and environmental samples. Journal of Clinical Microbiology, 50(3): 673–679.

Gams, W. & Bissett, J. 1998. Morphology and identification of Trichoderma. In: Trichoderma and Gliocladium: Basic Biology, Taxonomy and Genetics. Harman, G.E. and C.P. Kubicek (Eds.). Taylor and Francis, London, UK. pp. 3-34.

Govindaraj, M., Vetriventhan, M. & Srinivasan, M. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: An Overview of its analytical perspectives. Genetics Research International.

Gherbawy, Y. & Voigt, K. 2010. Molecular Identification of Fungi. Springer Berlin, Heidelberg.

Grodzicker, T., Williams, J., Sharp, P. & Sambrook, J. 1974. Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harbor Symposia on Quantitative Biology, 39(0): 439–446.

Hageskal, G., Vrålstad, T., Knutsen, A.K. & Skaar, I. 2008. Exploring the species diversity of Trichoderma in Norwegian drinking water systems by DNA Barcoding. Molecular Ecology Resources, 8: 1178-1188.

Halifu, S., Deng, X., Song, X. & Song, R. 2019. Effects of two Trichoderma Strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests, 10(9): 758.

Haque, M., Ilias, G. & Molla, A.H. 2011. Trichoderma-Enriched Biofertilizer: A prospective substitute of inorganic fertilizer for mustard (Brassica campestris) production. The Agriculturists, 8: 66-73.

Harman, G. 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Disease, 84: 377-393.

Harman, G., Petzoldt, R., Comis, A. & Chen, J. 2004. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology, 94: 147-53.

Harman, G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96: 190-194

Hassan, M.M., Farid, M.A. & Gaber, A. 2019. Rapid identification of Trichoderma koningiopsis and Trichoderma longibrachiatum using sequence-characterized amplified region markers. Egyptian Journal of Biological Pest Control, 29(1): 1-8.

Hermosa, M.R., Grondona, I., Díaz-Mínguez, J.M., Iturriaga, E.A. & Monte, E. 2001. Development of a Strain-Specific SCAR marker for the detection of Trichoderma atroviride 11, A biological control agent against soilborne fungal plant pathogens. Current Genetics, 38(6): 343-350.

Hirotsu, N., Murakami, N., Kashiwagi, T., Ujiie, K. & Ishimaru, K. Protocol: a simple gel-free method for SNP genotyping using allele-specific primers in rice and other plant species. Plant Methods, 6: 12.

Hirpara, D.G., Gajera, H.P., Hirpara, H.Z. & Golakiya, B.A. 2017. Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: Evaluation of cell wall-degrading enzymatic activities and molecular diversity analysis of antagonists. Journal of Molecular Microbiology and Biotechnology, 27(1): 22–28.

Howell, C.R. 2003. Mechanisms Employed by Trichoderma Species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1): 4-10.

Hoyos-Carvajal, L. & Bissett, J. 2011. Biodiversity of Trichoderma in Neotropics. IntechOpen..

Hoyos-Carvajal, L., Orduz, S. & Bissett, J. 2009. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Control, 51(3): 409–416.

Jaggard, K. W., Qi, A. & Ober, E. S. 2010. Possible changes to arable crop yields By 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554): 2835-2851.

Jaklitsch, W. & Voglmayr, H. 2015. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Studies in Mycology, 80: 1–87.

Jaklitsch, W.M. 2011. European species of Hypocrea part II: species with hyaline ascospores. Fungal Diversity, 48(1): 1–250.

Japanis, F.G., Chan, Y.S. & Chong, K.P. 2021. Evaluation on the effectiveness of combination of biocontrol agents in managing Ganoderma boninense of oil palm. Malaysian Journal of Microbiology, 17(1): 1-10.

Kashyap, P.L., Rai, P., Srivastava, A.K. & Kumar, S. 2017. Trichoderma for climate resilient agriculture. World Journal of Microbiology and Biotechnology, 33: 155.

Kim, T.G. & Knudsen, G.R. 2008. Quantitative real-time PCR effectively detects and quantifies colonization of sclerotia of Sclerotinia sclerotiorum by Trichoderma spp. Applied Soil Ecology, 40(1): 100–108.

Kolli, S.K. & Adusumilli, N. 2020. Trichoderma—Its paramount role in agriculture. In: New and Future Developments in Microbial Biotechnology and Bioengineering. J. Singh and P. Gehlot (Eds.). Elsevier. pp 69-83.

Kredics, L., Kocsubé, S., Nagy, L., Komoń-Zelazowska, M., Manczinger, L., Sajben, E. & Hatvani, L. 2009. Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. FEMS Microbiology Letters, 300(1): 58–67.

Kumari, N. & Thakur, S. 2014. Randomly amplified polymorphic DNA-a brief review. American Journal of Animal and Veterinary Sciences, 9:6-13.

Lander, E.S. 1996. The new genomics: Global views of biology. Science, 274: 536-539.

Lange, C., Weld, R.J., Cox, M.P., Bradshaw, R.E., McLean, K.L., Stewart, A. & Steyaert, J.M. 2016. Genome-scale investigation of phenotypically distinct but nearly clonal Trichoderma Strains. Peer Journal, 4: e2023.

Li R. X., Cai F., Pang G., Shen Q. R., Li, R. & Chen, W. 2015. Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS ONE, 10(6): e0130081.

Mahato, S., Bhuju, S. & Shrestha, J. 2018. Effect of Trichoderma viride as biofertilizer on growth and yield of wheat. Malaysian Journal of Sustainable Agriculture, 2(2): 01–05.

Manibhushanrao, K., Sreenivasaprasad, S., Baby, U. & Joe, Y. 1989. Susceptibility of rice sheath blight pathogen to mycoparasites. Current Science, 58(9): 515-518.

Manzar, N., Singh, Y., Kashyap, A.S., Sahu, P.K., Rajawat, M.V.S., Bhowmik, A. & Saxena, A.K. 2021. Biocontrol potential of native Trichoderma spp. against anthracnose of great millet (Sorghum bicolour L.) from Tarai and Hill regions of India. Biological Control, 152: 104474.

Mastouri, F., Björkman, T. & Harman, G.E. 2012. Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Molecular Plant-Microbe Interactions, 25(9): 1264–1271.

Mastouri, F., Björkman, T. & Harman, G.E. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100: 1213-1221.

Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Islam, K. & Latif, M. A. 2013. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. International Journal of Molecular Sciences, 14(11): 22499–22528.

Mokhtari, W., Chtaina, N., Halmschlager, E., Volgmayr, H., Stauffer, C. & Jaklitsch, W. 2017. Potential antagonism of some Trichoderma strains isolated from Moroccan soil against three phytopathogenic fungi of great economic importance. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 5(3): 248-254.

Molla, A.H., Haque, M.M., Haque, M.A. & Ilias, G. 2012. Trichoderma-Enriched Biofertilizer Enhances Production and Nutritional Quality of Tomato (Lycopersicon esculentum Mill.) and Minimizes NPK Fertilizer Use. Agricultural Research, 1: 265-272.

Montero-Barrientos, M., Hermosa, R., Cardoza, R.E., Gutiérrez, S., Nicolás, C. & Monte, E. 2010. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology, 167: 659-665.

Mukhopadhyay, R. & Kumar, D. 2020. Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control, 30(1).

Mukhopadhyay, R. & Pan, S. 2012. Effect of biopriming of radish (Raphanus sativus) seed with some antagonistic isolates of Trichoderma. Journal of the Botanical Society of Bengal, 66(2): 157-160.

Nawrocka, J. & Małolepsza, U. 2013. Diversity in plant systemic resistance induced by Trichoderma. Biological Control, 67(2): 149–156.

Negrão, S., Schmöckel, S.M. & Tester, M. 2016. Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1): 1–11.

Prasun, K.M., Benjamin, A.H., Alfredo, H., Monika S. & Charles M.K. 2013. Trichoderma research in the genome era. Annual Review of Phytopathology, 51(1): 105-129.

Mehboob-ur-Rahman, Zafar, Y. & Paterson, A.H. 2009. Gossypium DNA markers: Types, numbers, and uses. In: Genetics and Genomics of Cotton. Plant Genetics and Genomics: Crops and Models. Paterson, A.H. (Ed.). Springer, New York.

Mehboob-ur-Rahman, Zafar, Y. & Paterson, A.H.. (2009). Gossypium DNA Markers: Types, Numbers, and Uses. In: Paterson, A.H. (eds) Genetics and Genomics of Cotton. Plant Genetics and Genomics: Crops and Models, vol 3. Springer, New York, NY.

Rai, S., Kashyap, P.L., Kumar, S., Srivastava, A.K. & Ramteke, P.W. 2016. Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment. World Journal of Microbiology and Biotechnology, 32(1).

Raja, H.A., Miller, A.N., Pearce, C.J. & Oberlies, N.H. 2017. Fungal identification using molecular tools: a primer for the natural products research community. Journal of Natural Products, 80(3): 756–770.

Samuels, G.J., Dodd, S.L., Gams, W., Castlebury, L.A. & Petrini, O. 2002. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94(1): 146.

Shah, S., Nasreen, S. & Sheikh, P. 2012. Cultural and morphological characterization of Trichoderma spp. associated with green mold disease of Pleurotus spp. in Kashmir. Research Journal of Microbiology, 7(2): 139–144.

Sharma, P., Sharma, M., Raja, M. & Shanmugam, V. 2014. Status of Trichoderma research in India: A review. Indian Phytopathology, 67: 1–119.

Shoresh, M., Harman, G.E. & Mastouri, F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48(1): 21–43.

Singh, S., Parihar, P., Singh, R., Singh, V.P. & Prasad, S.M. 2016. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6: 1143.

Singh, A., Shukla, N., Kabadwal, B., Tewari, A. & Kumar, J. 2018. Review on Plant-Trichoderma-pathogen interaction. International Journal of Current Microbiology and Applied Sciences, 7(2): 2382–2397.

Skoneczny, D., Oskiera, M., Szczech, M. & Bartoszewski, G. 2015. Genetic diversity of Trichoderma atroviride strains collected in poland and identification of loci useful in detection of within-species diversity. Folia Microbiologica, 60(4): 297-307.

Susanto, A., Sudharto, P.S. & Purba, R.Y. 2005. Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations. Mycopathologia, 159: 153-157.

Tandon, A., Fatima, T., Anshu, Shukla, D., Tripathi, P., Srivastava, S. & Singh, P.C. 2020. Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. Journal of King Saud University - Science, 32(1): 791–798.

Téllez V.J., Rodríguez-Monroy, M., López Meyer, M., Montes-Belmont, R. & Sepúlveda-Jiménez, G. 2017. Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.). Environmental and Experimental Botany, 136: 85-93.

Topolovec-Pintarić, S. 2019. Trichoderma: Invisible partner for visible impact on agriculture. In: Trichoderma - The Most Widely Used Fungicide. Mohammad Manjur Shah, Umar Sharif and Tijjani Rufai Buhari (Eds.). IntechOpen.

Topolovec-Pintaric, S., Zutic, I. & Edyta, D. 2013. Enhanced growth of cabbage and red beet by Trichoderma viride. Acta Agriculturae Slovenica, 101: 87-92.

Weindling, R. 1932 Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 22: 837-845.

Weindling, R. 1934. Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology, 24: 1153-1179.

Welsh, J. & McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18(24): 7213–7218.

Woo, S.L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. & Lorito, M. 2014. Trichoderma-based Products and their widespread use in agriculture. The Open Mycology Journal, 8(1): 71–126.

Yang, W., Kang, X., Yang, Q., Lin, Y. & Fang, M. 2013. Review on the development of genotyping methods for assessing farm animal diversity. Journal of Animal Science and Biotechnology, 4(1).

Yasmeen, R. & Siddiqui, Z. S. 2017. Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Botanica Croatica, 76(2): 154–162.

Yoo, H.S. & Ting, A. 2017. In-vitro Endophyte-Host Plant Interaction Study to Hypothetically Describe Endophyte Survival and Antifungal Activities In-planta. Acta Biologica Szegediensis, 61: 1-11.

Zeilinger, S., Gruber, S., Bansal, R. & Mukherjee, P.K. 2016. Secondary metabolism in Trichoderma – Chemistry meets genomics. Fungal Biology Reviews, 30(2): 74–90.

Zin, N.A. & Badaluddin, N.A. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2): 168–178.

Zhang, H., Zhu, J., Gong, Z. & Zhu, J. K. 2022. Abiotic stress responses in plants. Nature Reviews Genetics, 23: 104–1191.

Zhang, F., Xu, X., Wang, G., Wu, B. & Xiao, Y. 2020. Medicago sativa and soil microbiome responses to Trichoderma as a biofertilizer in alkaline-saline soils. Applied Soil Ecology, 153: 103573.

Zhang, Y., Wang, X., Pang, G., Cai, F., Zhang, J., Shen, Z. & Shen, Q. 2019. Two-step genomic sequence comparison strategy to design Trichoderma strain-specific primers for quantitative PCR. AMB Express, 9(1): 1-10.

Zheng, K., Cai, Y., Chen, W., Gao, Y., Jin, J., Wang, H., Feng, S. & Lu, J. 2021. Development, identification, and application of a germplasm specific SCAR marker for Dendrobium officinale Kimura et Migo. Frontiers in Plant Science, 12: 669458.



How to Cite

Japanis, F. G., Vetaryan, S., Raja, N. K. K., Mokhtar, M. A. A., & Mohd Fishal, E. M. (2022). The Impact of Trichoderma spp. on Agriculture and Their Identification. Malaysian Applied Biology, 51(6), 1–15.



Review Articles