MOLECULAR PCR ASSAYS FOR DETECTION OF Ganoderma PATHOGENIC TO OIL PALM IN MALAYSIA

https://doi.org/10.55230/mabjournal.v51i1.2201

Authors

  • NUR HAILINI ZAINOL HILMI Plant Pathology and Biosecurity Unit, Biology and Sustainability Research Division, Malaysian Palm Oil Board (MPOB), 43000 Kajang, Selangor, Malaysia https://orcid.org/0000-0002-5378-4019
  • ABU SEMAN IDRIS Plant Pathology and Biosecurity Unit, Biology and Sustainability Research Division, Malaysian Palm Oil Board (MPOB), 43000 Kajang, Selangor, Malaysia
  • MOHAMED MAIZATUL-SURIZA Plant Pathology and Biosecurity Unit, Biology and Sustainability Research Division, Malaysian Palm Oil Board (MPOB), 43000 Kajang, Selangor, Malaysia
  • AHMAD ZAIRUN MADIHAH Plant Pathology and Biosecurity Unit, Biology and Sustainability Research Division, Malaysian Palm Oil Board (MPOB), 43000 Kajang, Selangor, Malaysia
  • RAMLI NUR-RASHYEDA Plant Pathology and Biosecurity Unit, Biology and Sustainability Research Division, Malaysian Palm Oil Board (MPOB), 43000 Kajang, Selangor, Malaysia

Keywords:

Basal stem rot disease, Oil palm, Ganoderma, Detection, PCR Technology

Abstract

Ganoderma boninense is a fungal pathogen that causes basal stem rot (BSR) disease in oil palm. Being a serious disease problem to the oil palm industry, monitoring and detecting the pathogen is of the utmost importance to reduce disease spread and facilitate effective management strategies. Because traditional culture-based assay is time-consuming, labour-intensive and required special skills in mycology, plant pathologists are turning to more accurate, sensitive and fast methods such as molecular techniques. In this study, polymerase chain reaction (PCR) assays were developed to detect pathogenic Ganoderma species causing BSR disease in oil palm using a primer designed based on the ribosomal DNA internal transcribed spacer (ITS) region. The effectiveness of conventional and real-time PCR assays was analysed compared to the traditional isolation-based assay. For artificially inoculated oil palm plantlets, consistent detection of G. boninense was observed. Real-time PCR assay has shown to be more sensitive and rapid in detecting G. boninense in field samples and could potentially serve as a validation tool to other detection techniques for implementation of effective disease control measures.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Babu, B.K., Mesapogu, S., Sharma, A., Somasani. S.R. & Arora, D. K. 2011. Quantitative real-time PCR assay for rapid detection of plant and human pathogenic Macrophomina phaseolina from field and environmental samples. Mycologia, 103(3): 466-473. DOI: https://doi.org/10.3852/10-181

Black, J. 2009. Quantitative real-time polymerase chain reaction (qPCR) of filamentous fungi in carpet. RTI Press, Research Triangle Park, NC. 12 pp. DOI: https://doi.org/10.3768/rtipress.2009.mr.0011.0909

Bridge, P.D., O'Grady, E.B., Pilotti, C.A. & Sanderson, F.R. 2000. Development of molecular diagnostics for the detection of Ganoderma isolates pathogenic to oil palm. In: Ganoderma Diseases of Perennial Crops. Flood, J., Bridge, P.D. & Holderness, M. (Eds.). CAB International, Wallingford. pp. 225-234. DOI: https://doi.org/10.1079/9780851993881.0225

Chong, K.P., Dayou, J. & Alexander A. 2017. Pathogenic nature of Ganoderma boninense and basal stem rot disease. In: Detection and control of Ganoderma boninense in oil palm crop. Chong, K. P., Dayou, J. & Alexander, A. (Eds.). Springer, Cham. pp. 5-12. DOI: https://doi.org/10.1007/978-3-319-54969-9_2

Eeuwens, C.J. 1976. Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiologia Plantarum, 36 (1): 23-28. DOI: https://doi.org/10.1111/j.1399-3054.1976.tb05022.x

Fryssouli, V., Zervakis, G.I., Polemis, E. & Typas, M.A. 2020. A global meta-analysis of ITS rDNA sequences from material belonging to the genus Ganoderma (Basidiomycota, Polyporales) including new data from selected taxa. MycoKeys, 75: 71-143. DOI: https://doi.org/10.3897/mycokeys.75.59872

Gachon, C., Mingam, A., and Charrier, B. 2004. Real-time PCR: what relevance to plant studies?. Journal of Experimental Botany, 55: 1445-1454. DOI: https://doi.org/10.1093/jxb/erh181

GiatFee, C. 2011. Management of Ganoderma diseases in oil palm plantations. Planter, 87(1022): 325-339.

Hughes, K.J.D., Tomlinson, J.A., Griffin, R.L., Boonham, N., Inman, A.J. & Lane, C.R. 2006. Development of a one-step real-time polymerase chain reaction assay for diagnosis of Phytophthora ramorum. Phytopathology, 96: 975-981. DOI: https://doi.org/10.1094/PHYTO-96-0975

Idris, A.S., NurRashyeda, R., Rusli, M.H., Sundram, S. & Norman, K. 2016. Standard Operating Procedures (SOP) Guidelines for Managing Ganoderma Disease in Oil Palm. Malaysian Palm Oil Board, Malaysia. pp. 1-7.

Idris, A.S., Yamaoka, M., Hayakawa, S., Basri, M.W., Noorhasimah, I. & Ariffin, D. 2003. PCR Technique for Detection of Ganoderma. MPOB Information Series, MPOB TT No. 188.

Ioos, R., Fabre, B., Saurat, C., Fourrier, C., Frey, P. & Marçais, B. 2010. Development, comparison, and validation of real-time and conventional PCR tools for the detection of the fungal pathogens causing brown spot and red band needle blights of pine. Phytopathology, 100: 105-114. DOI: https://doi.org/10.1094/PHYTO-100-1-0105

Ioos, R., Kowalski, T., Husson, C. & Holdenrieder, O. 2009. Rapid in planta detection of Chalara fraxinea by a real-time PCR assay using a dual-labelled probe. European Journal of Plant Pathology, 125: 329-335. DOI: https://doi.org/10.1007/s10658-009-9471-x

Izzuddin, M.A., Nisfariza, M.N., Ezzati, B., Idris, A.S., Steven, M.D. & Boyd, D. 2018. Analysis of airborne hyperspectral image using vegetation indices, red edge position and continuum removal for detection of Ganoderma disease in oil palm. Journal of Oil Palm Research, 30(3): 416-428.

Jing, C.J., Idris, A.S. & Zakaria, L. 2015. Mating compatibility and restriction analysis of Ganoderma isolates from oil palm and other palm hosts. Tropical Life Sciences Research, 26(2): 45-57.

Kamu, A., Phin, C.K., Idris, A.S., Gabda, D. & Mun, H.C. 2021. Estimating the yield loss of oil palm due to Ganoderma basal stem rot disease by using bayesian model averaging. Journal of Oil Palm Research, 33(1): 46-55. DOI: https://doi.org/10.21894/jopr.2020.0061

Khan, M., Wang, R., Li, B., Liu, P., Weng, Q. & Chen, Q. 2018. Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of Alternaria solani. Frontiers in Microbiology, 9: 2089-2099. DOI: https://doi.org/10.3389/fmicb.2018.02089

Li, D.Z., Gao, L.M., Li, H.T., Wang, H., Ge, X.J., Liu, J.Q., Chen, Z.D., Zhou, S.L., Chen, S.L. & Yang, J.B. 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences of the United States of America, 108(49): 19641-19646. DOI: https://doi.org/10.1073/pnas.1104551108

Liaghat, S., Ehsani, R., Mansor, S., Shafri, H.Z., Meon, S., Sankaran, S. & Azam, S.H. 2014. Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International Journal of Remote Sensing, 35: 3427-3439. DOI: https://doi.org/10.1080/01431161.2014.903353

Mackay, I.M. 2004. Real-time PCR in the microbiology laboratory. Clinical Microbiology and Infection, 10(3): 190-212. DOI: https://doi.org/10.1111/j.1198-743X.2004.00722.x

Madihah, A.Z., Maizatul-Suriza, M., Idris, A., Bakar, M., Kamaruddin, S., Bharudin, I., Abu Bakar, F. & Murad, A. 2018. Comparison of DNA extraction and detection of Ganoderma, causal of basal stem rot disease in oil palm using loop-mediated isothermal amplification. Malaysian Applied Biology, 47: 119-127.

Mandal, P., Babu, M.K., Jayanthi, M. & Satyavani, V. 2014. PCR based early detection of Ganoderma sp. causing basal stem rot of oil palm in India. Journal of Plantation Crops, 42(3): 392-394.

Midot, F., Lau, S.Y.L., Wong, W.C., Tung, H.J., Yap, M.L., Lo, M.L., Jee, M.S., Dom, S.P. & Melling, L. 2019. Genetic diversity and demographic history of Ganoderma boninense in oil palm plantations of Sarawak, Malaysia inferred from ITS regions. Microorganisms, 7: 464-480. DOI: https://doi.org/10.3390/microorganisms7100464

Murashige, T. & Skoogs, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Noor Azmi, A.N., Bejo, S.K., Jahari, M., Muharam, F.M., Yule, I. & Husin, N. A. 2020. Early detection of Ganoderma boninense in oil palm seedlings using support vector machines. Remote Sensing, 12: 3920-3941. DOI: https://doi.org/10.3390/rs12233920

Oak, S.W., Elledge, A.H., Yockey, E.K., Smith, W.D. & Tkacz, B.M. 2008. Phytophthora ramorum early detection surveys for forests in the United States, 2003-2006, in: Proceedings of The Sudden Oak Death Third Science Symposium. pp. 413-416.

Oerke, E. 2020. Remote Sensing of Diseases. Annual Review of Phytopathology, 58: 225-252. DOI: https://doi.org/10.1146/annurev-phyto-010820-012832

Okubara, P.A., Schroeder, K.L. & Paulitz, T.C. 2005. Real-time polymerase chain reaction: applications to studies on soilborne pathogens. Canadian Journal of Plant Pathology, 7: 300-313. DOI: https://doi.org/10.1080/07060660509507229

Panchal, G. & Bridge, P.D. 2005. Following basal stem rot in young oil palm plantings. Mycopathologia, 159: 123-127. DOI: https://doi.org/10.1007/s11046-004-4434-4

Parveez, G.K.A., Ahmad Tarmizi, A.H., Sundram, S., Loh, S.K., Ong-Abdullah, M., Palam, K.D.P., Salleh, K.M., Mohd Ishak, S. & Idris, Z. 2021. Oil palm economic performance in Malaysia and R&D progress in 2020. Journal of Oil Palm Research, 33(2): 181-214.

Rees, R.W., Flood, J., Hasan, Y. & Cooper, R.M. 2007. Effects of inoculum potential, shading and soil temperature on root infection of oil palm seedlings by the basal stem rot pathogen Ganoderma boninense. Plant Pathology, 56: 862-870. DOI: https://doi.org/10.1111/j.1365-3059.2007.01621.x

Rutledge, R.G. & Côté, C. 2003. Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Research, 31(16): 93-99. DOI: https://doi.org/10.1093/nar/gng093

Saitou, N. 2013. Binomial distribution. In: Brenner's Encyclopedia of Genetics. S. Maloy and K. Hughes (Eds.). Academic Press, New York, NY, USA. pp. 331. DOI: https://doi.org/10.1016/B978-0-12-374984-0.00152-2

Schaad, N.W., Frederick, R.D., Shaw, J., Schneider, W.L., Hickson, R., Petrillo, M.D. & Luster, D.G. 2003. Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annual Review of Phytopathology, 41: 305-324. DOI: https://doi.org/10.1146/annurev.phyto.41.052002.095435

Schneider, S., Jung, E., Queloz, V., Meyer, J.B. & Rigling, D. 2019. Detection of pine needle diseases caused by Dothistroma septosporum, Dothistroma pini and Lecanosticta acicola using different methodologies. Forest Pathology, 49: e12495. DOI: https://doi.org/10.1111/efp.12495

Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W. & Consortium, F.B. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences of the United States of America, 109: 6241-6246. DOI: https://doi.org/10.1073/pnas.1207508109

Shafri, H.Z.M., Hamdan, N. & Anuar, M.I. 2012. Detection of stressed oil palms from an airborne sensor using optimised spectral indices. International Journal of Remote Sensing, 33: 4293-4311. DOI: https://doi.org/10.1080/01431161.2011.619208

Sikdar, P., Okubara, P., Mazzola, M. & Xiao, C.L. 2014. Development of PCR assays for diagnosis and detection of the pathogens Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens in apple fruit. Plant Disease, 98: 241-246. DOI: https://doi.org/10.1094/PDIS-05-13-0495-RE

Sundram, S., Angel, L.P.L., Sirajuddin, S.A., Abu Bakar, D. & Abdul Rahman, S.R. 2020. Tissue culture system for the artificial pathogenicity of Ganoderma boninense. MPOB Information Series, MPOB TT No. 669.

Tomlinson, J.A., Barker, I. & Boonham, N. 2007. Faster, simpler, more specific methods for improved molecular detection of Phytophthora ramorum in the field. Applied and Environmental Microbiology, 73: 4040-4047. DOI: https://doi.org/10.1128/AEM.00161-07

Utomo, C. and Niepold, F. 2000. The development of diagnostic tools for Ganoderma in oil palm. In: Ganoderma Diseases of Perennial Crops. J. Flood, P.D. Bridge & M. Holderness (Eds.). CAB International, Wallingford. pp. 235-247. DOI: https://doi.org/10.1079/9780851993881.0235

Utomo, C., Werner, S., Niepold, F. & Deising, H.B. 2005. Identification of Ganoderma, the causal agent of basal stem rot disease in oil palm using a molecular method. Mycopathologia, 159, 159-170. DOI: https://doi.org/10.1007/s11046-004-4439-z

White, T.J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White (Eds.). Academic Press, New York, NY, USA. pp. 315-322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Published

31-03-2022

How to Cite

ZAINOL HILMI, N. H., IDRIS, A. S., MAIZATUL-SURIZA, M., MADIHAH, A. Z., & NUR-RASHYEDA, R. (2022). MOLECULAR PCR ASSAYS FOR DETECTION OF Ganoderma PATHOGENIC TO OIL PALM IN MALAYSIA . Malaysian Applied Biology, 51(1), 171–182. https://doi.org/10.55230/mabjournal.v51i1.2201

Issue

Section

Research Articles