EVALUATIONS OF ENTOMOPATHOGENIC FUNGI, Metarhizium anisopliae INOCULATE ON THE TREATED SOILS TOWARDS Paederus fuscipes

https://doi.org/10.55230/mabjournal.v51i1.2264

Authors

  • ANDY FU HAO TAN School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
  • HIDEYUKI NAGAO School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
  • WAN FATMA ZUHARAH School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia https://orcid.org/0000-0002-5789-2244

Keywords:

Entomopathogenic, Metarhizium anisopliae, Paederus fuscipes, pathogenicity

Abstract

Rove beetle, Paederus fuscipes Curtis is a natural predator of several crop pests in the agriculture ecosystem, however, their high intrusion into human settlements caused them to become public health concern due to Paedarus dermatitis infection among humans. The entomopathogenic effectiveness of Metarhizium anisopliae Mechnikov was tested as biological control towards adults Paederus fuscipes by inoculating on soils. The mortality of P. fuscipes was observed and data were subjected to analysis using ANOVA and Kaplan-Meier method. Results show that P. fuscipes tested with the highest concentration at 1.3 × 1010 conidia/mL exhibited the shortest mean mortality time at 11.0 ± 2.5 days and survival time of 7.6 ± 0.7 days, yet the second-highest concentration exhibited at 2.2 × 109 showed mean mortality of 18.4 ± 4.2 days and survival time of 11.9 ± 0.8 days. Log Rank (Mantel-Cox) pairwise comparison indicated the significant differences between the highest concentration of 1.3 × 1010 with the control (χ2 = 62.3, df=1 p<0.0005). Both mean mortality time and survival time of P. fuscipes showed inconsistent trends from the highest concentration of M. anisopliae towards the lowest. Pathogenicity was observed at the concentrations of 106, 109, and 1010 after performing Koch’s postulates. The results were unexpected but could indicate that M. anisopliae has the potential to be a biocontrol agent at a higher concentration.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ekesi, S. 2001. Pathogenicity and antifeedant activity of entomopathogenic hyphomycetes to the cowpea leaf beetle, Ootheca mutabilis Shalberg. Insect Science and its Application, 21: 55-60. DOI: https://doi.org/10.1017/S174275840002004X

Frank, J.H. & Kanamitsu, K. 1987. Paederus, Sensu Lato (Coleoptera: Staphylinidae): natural history and medical importance. Journal of Medical Entomology, 24: 155-191. DOI: https://doi.org/10.1093/jmedent/24.2.155

Fuxa, J.R. & Richter, A.R. 2004. Effects of soil moisture and composition and fungal isolate on prevalence of Beauveria bassiana in laboratory colonies of the red imported fire ant (Hymenoptera: Formicidae). Environmental Entomology, 33: 975-981. DOI: https://doi.org/10.1603/0046-225X-33.4.975

Ghany, T.M.A. 2015. Entomopathogenic fungi and their role in biological control. OMIC International. 42pp.

Gindin, G., Levski, S., Glazer, I. & Soroker. V. 2006. Evaluation of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana against the Red Palm Weevil Rhynchophorus ferrugineus. Phytoparasitica, 34(4): 370-379 DOI: https://doi.org/10.1007/BF02981024

Gnanaraj, P., Venugopal, M.K. & Pandurangan, C.N. 2007. An outbreak of Paederus dermatitis in a suburban hospital in South India: A report of 123 cases and review of literature. American Academy of Dermatology, 57(2): 297-300. DOI: https://doi.org/10.1016/j.jaad.2006.10.982

Grund, J. & Hirsch, L. 2010. The potential of entomopathogenic fungal isolates as an environmentally friendly management option against Acanthoscelides obtectus. Faculty of Landscape Planning, Horticulture and Agricultural Science - LTJ-Fakulteten Department, Plant Protection Biology Alnarp.

Gul, H.T., Saeed, S. & Khan, F.Z.A. 2014. Entomopathogenic fungi as effective insect pest management tactic: A review. Applied Sciences and Business Economics, 1(1): 10-18.

Herlinda, S. 2010. Spore density and viability of entomopathogenic fungal isolates from Indonesia, and their virulence against Aphis gossypii glover (Homoptera: Aphididae). Tropical Life Sciences Research, 21(1): 11-19.

Keller, S., Kessler, P. & Schweizer, C. 2003. Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. BioControl, 48(3): 307-319. DOI: https://doi.org/10.1023/A:1023646207455

Khan, T., Hassali, M., Gillani, S. & Hameed, M. 2008. Clinical presentation of "Rove Beetle Dermatitis". Australasian Medical Journal, 1(7): 19-24. DOI: https://doi.org/10.4066/AMJ.2009.77

Kirkland, B.H., Cho, E.M. & Keyhani, O.N. 2004. Differential susceptibility of Amblyomma maculatum and Amblyomma americanum (Acari, Ixodidea) to the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Biological Control, 31: 41-42. DOI: https://doi.org/10.1016/j.biocontrol.2004.07.007

Laba, W. & Kilin, D. 1994. Paederus fuscipes Curtis. biology and feeding ability of brown planthoper (Nilaparvata lugens Stall). Risalah Hasil Penelitian Tanaman Pangan, 4: 240-245.

Magalhaes, B.P., De Faria, M.R., Lecoq, M., Schmidt, F.G.V., Silva, J.B.T. & Frazao, H.S., Balanca, G. & Foucart, A. 2001. The use of Metarhizium anisopliae var. acridum against the grasshopper Rhammatocerus schistocercoides in Brazil. Journal of Orthoptera Research, 10: 199-202. DOI: https://doi.org/10.1665/1082-6467(2001)010[0199:TUOMAV]2.0.CO;2

Makaka, C. 2008. The efficacy of two isolates of Metarhizium anisopliae (Metschin) Sorokin (Deuteromycotina: Hyphomycetes) against the adults of the black maize beetle Heteronychus licas Klug (Coleoptera: Scarabidae) under laboratory conditions. African Journal of Agricultural Research, 3(4): 259-265.

Maryam, S., Fadzly, N. & Zuharah, W.F. 2017. Abundance, distribution and dispersal time of Paedarus fuscipes (Coleoptera: Staphylinidae) and its association to human settings. Tropical Biomedicine, 34(1): 224-236.

Mnyone, L.L., Kirby, M.J., Lwetoijera, D.W., Mpingwa, M.W., Knols, B.G. & Takken, W. 2009. Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: Effects of concentration, co-formulation, exposure time and persistence. Malaria Journal, 8: 309. DOI: https://doi.org/10.1186/1475-2875-8-309

Ortiz-Urquiza, A. & Keyhani, N.O. 2013. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects, 4: 357-374. DOI: https://doi.org/10.3390/insects4030357

Pedrini, N., Ortiz-Urquiza, A., Huarte-Bonnet, C., Zhang, S. & Keyhani, N.O. 2013. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host pathogen interaction. Frontiers in Microbiology, 4: 24. DOI: https://doi.org/10.3389/fmicb.2013.00024

Raju, M. 2002. Information on rove beetle. Seberang Perai Municipal Council Bull. URL http://www.mpsp.gov.my/image/roveeng.pdf (accessed 12.07.21).

Roberts, D.W. & Leger, R.J. 2004. Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Advances in Applied Microbiology, 54: 1-70. DOI: https://doi.org/10.1016/S0065-2164(04)54001-7

Samson, R.A., Evans, H.C. & Latgé, J.P. 1988. Atlas of Entomopathogenic Fungi. Springer, Verlag. 187 pp. DOI: https://doi.org/10.1007/978-3-662-05890-9

Steenberg, T., Langer, V. & Esbjerg, P. 1995. Entomopathogenic fungi in predatory beetles (Col.: Carabidae and Staphylinidae) from agricultural fields. Entomophaga, 40: 77-85. DOI: https://doi.org/10.1007/BF02372683

Tanada, Y. & Kaya, H.K. 1993. Insect Pathology. Academic Press, New York. 490 pp.

Tefera, T. & Pringle, K.L. 2003. Food consumption by Chilo partellus (Lepidoptera: Pyralidae) larvae infected with Beauveria bassiana and Metarhizium anisopliae and effects of feeding natural versus artificial diets on mortality and mycosis. Journal of Invertebrate and Pathology, 84: 220-225. DOI: https://doi.org/10.1016/j.jip.2003.11.001

Thomas, M.B., Blanford, S. & Lomer, C.J. 1997. Reduction of feeding by the variegated grasshopper, Zonocerus variegatus, following infection by the fungal pathogen Metarhizium avoviride. Biocontrol Science and Technology, 3: 327-334. DOI: https://doi.org/10.1080/09583159730730

Verma, L.C.R. & Agarwal, M.S. 2006. Blistering beetle dermatitis: An outbreak. Medical Journal Armed Forces India, 62: 42-44. DOI: https://doi.org/10.1016/S0377-1237(06)80154-1

Yasri, S. & Wiwanitkit, V. 2014. Paedarus dermatitis. Journal of Coastal Life Medicine, 2(2): 124.

Yin, F., Xiao, M., Berestetskiy, A. & Hu, Q. 2021. The Metarhizium anisopliae toxin, Destruxin A, interacts with the SEC23A and TEME214 proteins of Bombyx mori. Journal of Fungi, 7(6): 460. DOI: https://doi.org/10.3390/jof7060460

Zimmermann, G. 2007. Review on safety of the entomophatogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 17: 879-920. DOI: https://doi.org/10.1080/09583150701593963

Zuharah, W.F. & Sufian, M. 2014. Human health hazards caused by Rove Beetles. Bio-Bulletin June/July 2014, School of Biological Sciences, Universiti Sains Malaysia, 6-7 pp.

Published

31-03-2022

How to Cite

TAN, A. F. H., NAGAO, H., & ZUHARAH , W. F. . (2022). EVALUATIONS OF ENTOMOPATHOGENIC FUNGI, Metarhizium anisopliae INOCULATE ON THE TREATED SOILS TOWARDS Paederus fuscipes. Malaysian Applied Biology, 51(1), 129–136. https://doi.org/10.55230/mabjournal.v51i1.2264

Issue

Section

Research Articles