Penilaian Model Matematik Bagi Pertumbuhan Mikroalga Characium sp. UKM1, Chlorella sp. UKM2 dan Coelastrella sp. UKM4 dalam Air Larut Resapan Sintetik

https://doi.org/10.55230/mabjournal.v51i5.2342

Authors

  • Mohamad Faisal Ni Aznan Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Nazlina Haiza Mohd Yasin Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Norzila Mohd School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Terengganu Campus, Bukit Besi, 23000 Dungun, Terengganu, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Mohd Sobri Takriff Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, UAE

Keywords:

Air larut resapan sintetik, Characium sp. UKM1, Chlorella sp. UKM2, Coelastrella sp. UKM4, model matematik, mikroalga

Abstract

Mikroalga berpotensi sebagai agen fikoremediasi air sisa dan metabolit yang terhasil dalam biojisim mikroalga mampu diaplikasikan dalam bidang bioteknologi. Pertumbuhan mikroalga dalam air sisa menjadi petunjuk bahawa mikroalga mampu hidup dalam persekitaran ekstrim dan menjadi agen fikoremediasi air sisa. Oleh itu, model matematik yang terbaik bagi kinetik pertumbuhan mikroalga yang dikultur dalam air sisa perlu dikaji bagi menentukan model yang tepat untuk digunakan pada masa akan datang. Dalam kajian ini, penilaian model matematik yang terbaik terhadap tiga mikroalga tempatan, Characium sp. UKM1, Chlorella sp. UKM2 dan Coelastrella sp. UKM4 yang dikultur dalam air larut resapan sintetik dianalisis dengan menggunakan tiga model matematik iaitu logistik, logistik terubah suai dan Gompertz terubah suai. Selain itu, analisis statistik dijalankan bagi penentuan model terbaik dengan mengambil kira nilai regressi terubah suai (adj R2), ralat tambah kuasa dua (SSE), punca min ralat kuasa dua (RMSE), faktor bias (BF), faktor kejituan (AF) dan peratus ramalan ralat piawai (%SEP). Hasil menunjukkan model yang terbaik bagi ketiga-tiga mikroalga dalam air larut resapan sintetik adalah model Gompertz terubah suai. Ini disebabkan oleh beberapa ciri antaranya plot residual yang mendekati model matematik, nilai BF yang mendekati nilai satu, serta nilai terendah %SEP berbanding model matematik yang lain. Kesimpulannya, model Gompertz terubah suai adalah model penyesuaian yang terbaik terhadap pertumbuhan mikroalga dalam air larut resapan sintetik.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abbaszadeh, A., Motevali, A., Khoshtaghaza, M.H. & Kazemi, M. 2011. Evaluation of thin-layer drying models and neural network for describing drying kinetics of Lasagnas angustifolia L. International Food Research Journal, 18(4): 1321–1328.

Abdel-Raouf, N., Al-Homaidan, A.A. & Ibraheem, I.B.M. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3): 257−275. DOI: https://doi.org/10.1016/j.sjbs.2012.04.005

Aslan, S. & Kapdan, I.K. 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1): 64–70. DOI: https://doi.org/10.1016/j.ecoleng.2006.04.003

Çelekli, A., Balcı, M. & Bozkurt, H. 2008. Modelling of Scenedesmus obliquus; function of nutrients with modified Gompertz model. Bioresource Technology, 99(18): 8742−8747. DOI: https://doi.org/10.1016/j.biortech.2008.04.028

Cheah, W.Y., Show, P.L., Juan, J.C., Chang, J.S. & Ling, T.C. 2018. Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Conversion and Management, 174(6):430–438. DOI: https://doi.org/10.1016/j.enconman.2018.08.057

Ding, G.T., Mohd Yasin, N.H., Takriff, M.S., Kamarudin, K.F., Salihon, J., Yaakob, Z. & Mohd Hakimi, N.I.N. 2020. Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally isolated microalgae: Chlorella sorokiniana UKM2, Coelastrella sp. UKM4 and Chlorella pyrenoidosa UKM7. Journal of Water Process Engineering, 35: 101202. DOI: https://doi.org/10.1016/j.jwpe.2020.101202

Ding, G.T., Yaakob, Z., Takriff, M.S., Salihon, J. & Abd Rahaman, M.S. 2016. Biomass production and nutrients removal by a newly-isolated microalgal strain Chlamydomonas sp. in palm oil mill effluent (POME). International Journal of Hydrogen Energy, 41(8): 4888–4895. DOI: https://doi.org/10.1016/j.ijhydene.2015.12.010

Dong, Q., Tu, K., Guo, L., Li, H. & Zhao, Y. 2007. Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions. Food Microbiology, 24(6): 624–632. DOI: https://doi.org/10.1016/j.fm.2006.12.003

Fujikawa, H., Kai, A. & Morozumi, S. 2003. A new logistic model for bacterial growth. Journal of the Food Hygienic Society of Japan, 44(3): 155–160. DOI: https://doi.org/10.3358/shokueishi.44.155

Halmi, M.I.E., Shukor, Johari, W.L.W. & Shukor, M.Y. 2014. Modeling the Growth Kinetics of Chlorella vulgaris Cultivated in Microfluidic Devices. Asian Journal of Plant Biology, 2(1): 7—10. DOI: https://doi.org/10.54987/ajpb.v2i1.82

Halmi, M.I.E., Shukor, M.S., & Shukor, M.Y.A. 2014. Evaluation of several mathematical models for fitting the growth and kinetics of the Catechol-degrading Candida parapsilopsis: Part 1. Journal of Environmental Bioremediation and Toxicology, 2(2): 48–52. DOI: https://doi.org/10.54987/jebat.v2i2.217

Hariz, H.B., Takriff, M.S., Ba-Abbad, M.M., Mohd Yasin, N.H. & Mohd Hakim, N.I.N. 2018. CO2 fixation capability of Chlorella sp. and its use in treating agricultural wastewater. Journal of Applied Phycology, 30(6): 3017–3027. DOI: https://doi.org/10.1007/s10811-018-1488-0

Hariz, H.B., Takriff, M.S., Mohd Yasin, N.H., Ba-Abbad, M.M. & Mohd Hakimi, N.I.N. 2019. Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat Palm Oil Mill Effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. Journal of Water Process Engineering, 32: 100907. DOI: https://doi.org/10.1016/j.jwpe.2019.100907

Johari, M.S. 2014. Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian, 2(1): 1–6. DOI: https://doi.org/10.54987/ajpb.v2i1.81

Lam, M.K., Yusoff, M.I., Uemura, Y., Lim, J.W., Khoo, C.G., Lee, K.T. & Ong, H.C. 2017. Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103: 197–207. DOI: https://doi.org/10.1016/j.renene.2016.11.032

López, S., Prieto, M., Dijkstra, J., Dhanoa, M.S. & France, J. 2004. Statistical evaluation of mathematical models for microbial growth. International Journal of Food Microbiology, 96(3): 289–300. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.026

Minhat, Z.B.T., Ab Rahaman, M.S.B., Takriff, M.S. & Kofli, N.T. 2016. Differentiation of biomass composition between isolated and commercial strains of microalgae. Journal of Engineering Science and Technology, 11(5): 737–744.

Mohd, N., Yasin, N.H.M. & Takriff, M.S. 2021. Predictive growth model of indigenous green microalgae (Scenedesmus sp. UKM9) in palm oil mill effluent (POME). IOP Conference Series: Materials Science and Engineering, 1051(1):012070. DOI: https://doi.org/10.1088/1757-899X/1051/1/012070

Ni Aznan, M. F., Mohd Yasin, N. H., Mohd, N., & Takriff, M. S. 2022. Growth kinetics determination using different mathematical models for microalgae Characium sp. UKM1, Chlorella sp. UKM2 and Coelastrella sp. UKM4. ASM Science Journal, 17:1-12.

Ortiz-Moreno, M.L., Cárdenas-Poblador, J., Agredo, J. & Solarte-Murillo, L.V. 2020. Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum. Universitas Scientiarum, 25(1):113–148. DOI: https://doi.org/10.11144/Javeriana.SC25-1.mte

Phukoetphim, N., Salakkam, A., Laopaiboon, P. & Laopaiboon, L. 2017. Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models. Journal of Biotechnology, 243: 69–75. DOI: https://doi.org/10.1016/j.jbiotec.2016.12.012

Randrianarison, G. & Ashraf, M.A. 2018. Microalgae Plant (Chlorella sp.) for Wastewater Treatment and Energy Production. Ekoloji, 27(106): 1455–1465.

Stanbury, P.F., Whitaker, A., Hall, S.J. 2017. Chapter 2 - Microbial growth kinetics. In: Principles of Fermentation Technology. 3rd Ed. P.F. Stanbury, A. Whitaker, S.J. Hall, (Eds). Elsevier Ltd, Butterworth-Heinemann. pp. 21-74. DOI: https://doi.org/10.1016/B978-0-08-099953-1.00002-8

Windarto, W., Eridani, E. & Purwati, U.D. 2018. A new modified logistic growth model for empirical use. Communication in Biomathematical Sciences, 1(2): 122. DOI: https://doi.org/10.5614/cbms.2018.1.2.5

Yusof, N., Hassan, M.A., Phang, L.Y., Tabatabaei, M., Othman, M.R., Mori, M., Wakisaka, M., Sakai, K., & Shirai, Y. 2010. Nitrification of ammonium-rich sanitary landfill leachate. Waste Management, 30(1): 100–109. DOI: https://doi.org/10.1016/j.wasman.2009.08.018

Published

26-12-2022

How to Cite

Ni Aznan, M. F. ., Mohd Yasin, N. H., Mohd, N. ., & Takriff, M. S. . (2022). Penilaian Model Matematik Bagi Pertumbuhan Mikroalga Characium sp. UKM1, Chlorella sp. UKM2 dan Coelastrella sp. UKM4 dalam Air Larut Resapan Sintetik . Malaysian Applied Biology, 51(5), 249–260. https://doi.org/10.55230/mabjournal.v51i5.2342