Gamma Radiation Dose-Response of Gram-Positive and Gram-Negative Bacteria

https://doi.org/10.55230/mabjournal.v51i5.2370

Authors

  • Jan Nie Hing Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
  • Bor Chyan Jong Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
  • Pauline Woan Ying Liew Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
  • Rashid Elly Ellyna Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
  • Shuhaimi Shamsudin Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia

Keywords:

Cesium-137, ionising radiation, mutagenesis, survival curves

Abstract

Bacterial mutagenesis induced through gamma irradiation is one of the techniques for strain improvement. The DNA changes caused by radiation and reactive oxygen species created from water radiolysis induced bacterial mutagenesis. There is always a constant demand for better quality strains from the bioprocessing industries to speed up production and increase yield. Bacillus strains are Gram-positive bacteria whereas Escherichia coli is a Gram-negative bacteria; they are all model organisms used by the bioprocessing industries. This study investigates the effect of acute gamma irradiation on Gram-positive Bacillus megaterium NMBCC50018, Bacillus subtilis NMBCC50025 and Gram-negative Escherichia coli. Samples were irradiated in Gamma Cell Acute Irradiation Facility at Malaysian Nuclear Agency with irradiation doses from 0.1 kGy to 2.1 kGy. The radiation sources were from two Cesium-137 sealed sources. Dose responses are crucial information for bacterial mutagenesis studies. The survival curves of viable bacterial cell count versus radiation doses were plotted to determine dose-response and lethal dose, 50% (LD50). Viable cells reduce as irradiation doses increase. The LD50 for Bacillus megaterium NMBCC50018, Bacillus subtilis NMBCC50025 and Escherichia coli were 1.2 kGy, 0.2 kGy, and 0.03 kGy, respectively. Bacillus megaterium NMBCC50018 was most resistant to gamma radiation. Dose responses between Gram-positive and Gram-negative bacteria were concluded to be different.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Akman, F., Enez, B., Fincan, S.A., Akdemir, F. & Geçibesler, I.H. 2020. Investigation of some radiation interaction parameters for bacteria isolated from the soil in the low energy region. Canadian Journal of Physics, 98(3): 251-259. DOI: https://doi.org/10.1139/cjp-2018-0467

Araby, E., Nada, H.G., Abou El-Nour, S.A. & Hammad, A. 2020. Detection of tetracycline and streptomycin in beef tissues using Charm II, isolation of relevant resistant bacteria and control their resistance by gamma radiation. BMC Microbiology, 20(1): 1-11. DOI: https://doi.org/10.1186/s12866-020-01868-7

Ayari, S., Dussault, D., Millette, M., Hamdi, M. & Lacroix, M. 2009. Changes in membrane fatty acids and murein composition of Bacillus cereus and Salmonella Typhi induced by gamma irradiation treatment. International Journal of Food Microbiology, 135(1): 1-6. DOI: https://doi.org/10.1016/j.ijfoodmicro.2009.07.012

Bouassida, M., Ghazala, I., Ellouze-Chaabouni, S. & Ghribi, D. 2018. Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in a sand system. Journal of Microbiology and Biotechnology, 28(1): 95-104. DOI: https://doi.org/10.4014/jmb.1701.01033

Burkholder, P.R. & Giles Jr, N.H., 1947. Induced biochemical mutations in Bacillus subtilis. American Journal of Botany, 34(6): 345-348. DOI: https://doi.org/10.1002/j.1537-2197.1947.tb12999.x

Chen, X., Zhou, L., Tian, K., Kumar, A., Singh, S., Prior, B.A. & Wang, Z. 2013. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnology Advances, 31(8): 1200-1223. DOI: https://doi.org/10.1016/j.biotechadv.2013.02.009

Cho, H.S., Jo, J.C., Shin, C.H., Lee, N., Choi, J.S., Cho, B.K., Roe, J.H., Kim, C.W., Kwon, H.J. & Yoon, Y.J. 2019. Improved production of clavulanic acid by reverse engineering and overexpression of the regulatory genes in an industrial Streptomyces clavuligerus strain. Journal of Industrial Microbiology and Biotechnology, 46(8): 1205-1215. DOI: https://doi.org/10.1007/s10295-019-02196-0

Errington, J. & van der Aart, L.T. 2020. Microbe profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse. Microbiology, 166(5): 425-427. DOI: https://doi.org/10.1099/mic.0.000922

Farrag, H.A., Abdallah, N., Shehata, M.M. & Awad, E.M. 2019. Natural outer membrane permeabilizers boost antibiotic action against irradiated resistant bacteria. Journal of Biomedical Science, 26(1): 1-14. DOI: https://doi.org/10.1186/s12929-019-0561-6

Gidden, J., Denson, J., Liyanage, R., Ivey, D.M. & Lay Jr, J.O., 2009. Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry. International Journal of Mass Spectrometry, 283(1-3): 178-184. DOI: https://doi.org/10.1016/j.ijms.2009.03.005

Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G. & Liu, L. 2018. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metabolic Engineering, 50: 109-121. DOI: https://doi.org/10.1016/j.ymben.2018.05.006

Hanlon, P. & Sewalt, V. 2021. GEMs: genetically engineered microorganisms and the regulatory oversight of their uses in modern food production. Critical Reviews in Food Science and Nutrition, 61(6): 959-970. DOI: https://doi.org/10.1080/10408398.2020.1749026

Harrell, C.R., Djonov, V., Fellabaum, C. & Volarevic, V. 2018. Risks of using sterilization by gamma radiation: the other side of the coin. International Journal of Medical Sciences, 15(3): 274-279. DOI: https://doi.org/10.7150/ijms.22644

Hashemabad, Z.N., Shabanpour, B., Azizi, H., Ojagh, S.M. & Alireza, A. 2018. Effects of TiO2 nanocomposite packaging and gamma irradiation on the shelf-life of rainbow trout stored at (+ 4°C). Turkish Journal of Fisheries and Aquatic Sciences, 18(12): 1387-1397. DOI: https://doi.org/10.4194/1303-2712-v18_12_07

Hosny, A.S., Sabbah, F.M. & El-Bazza, Z.E., 2018. Studies on the microbial decontamination of Egyptian bee pollen by γ radiation. Egyptian Pharmaceutical Journal, 17(3): 190-200.

Hu, F., Liu, Y. & Li, S. 2019. Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microbial Cell Factories, 18(1): 1-13. DOI: https://doi.org/10.1186/s12934-019-1089-x

Leavell, M.D., Singh, A.H. & Kaufmann-Malaga, B.B. 2020. High-throughput screening for improved microbial cell factories, perspective and promise. Current Opinion in Biotechnology, 62: 22-28. DOI: https://doi.org/10.1016/j.copbio.2019.07.002

Manikandan, A., Johnson, I., Jaivel, N., Krishnamoorthy, R., SenthilKumar, M., Raghu, R., Gopal, N.O., Mukherjee, P.K. & Anandham, R. 2022. Gamma-induced mutants of Bacillus and Streptomyces display enhanced antagonistic activities and suppression of the root rot and wilt diseases in pulses. Biomolecular Concepts, 13(1): 103-118. DOI: https://doi.org/10.1515/bmc-2022-0004

Oskouei, S., Feghhi, S.A.H. & Soleimani, N. 2022. Classification and comparison of bacterial resistance and resistance learning against low dose irradiation. Research square. DOI: https://doi.org/10.21203/rs.3.rs-1445794/v1

Plavec, T.V. & Berlec, A. 2020. Safety aspects of genetically modified lactic acid bacteria. Microorganisms, 8(2): 297. DOI: https://doi.org/10.3390/microorganisms8020297

Pour Khavari, A. 2020. Role of oxidative stress response in radiosensitivity (Ph.D). Stockholm University. DOI: https://doi.org/10.1155/2020/8948723

Rohde, M. 2019. The Gram-positive bacterial cell wall. Microbiology Spectrum, 7(3): 7-3. DOI: https://doi.org/10.1128/microbiolspec.GPP3-0044-2018

Sebastian, J., Hegde, K., Kumar, P., Rouissi, T. & Brar, S.K. 2019. Bioproduction of fumaric acid: An insight into microbial strain improvement strategies. Critical Reviews in Biotechnology, 39(6): 817-834. DOI: https://doi.org/10.1080/07388551.2019.1620677

Simmons, L.A., Goranov, A.I., Kobayashi, H., Davies, B.W., Yuan, D.S., Grossman, A.D. & Walker, G.C., 2009. Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. Journal of Bacteriology, 191(4): 1152-1161. DOI: https://doi.org/10.1128/JB.01292-08

Singh, R. & Singh, D. 2012. Sterilization of bone allografts by microwave and gamma radiation. International Journal of Radiation Biology, 88(9): 661-666. DOI: https://doi.org/10.3109/09553002.2012.700166

Soghomonyan, D.R., Margaryan, A., Trchounian, K., Ohanyan, K., Badalyan, H. & Trchounian, A. 2018. The effects of low doses of gamma-radiation on growth and membrane activity of Pseudomonas aeruginosa GRP3 and Escherichia coli M17. Cell Biochemistry and Biophysics, 76(1): 209-217. DOI: https://doi.org/10.1007/s12013-017-0831-4

Soghomonyan, D.R., Badalyan, H.G. & Trchounian, A.H. 2019. The effects of low doses of gamma radiation on cell size parameters of soil bacteria. Proceedings of the YSU B: Chemical and Biological Sciences, 53(3): 180-186.

Sukhi, S.S., Shashidhar, R., Kumar, S.A. & Bandekar, J.R. 2009. Radiation resistance of Deinococcus radiodurans R1 with respect to growth phase. FEMS Microbiology Letters, 297(1): 49-53. DOI: https://doi.org/10.1111/j.1574-6968.2009.01652.x

Vary, P.S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W.D. & Jahn, D. 2007. Bacillus megaterium—from simple soil bacterium to industrial protein production host. Applied Microbiology and Biotechnology, 76(5): 957-967. DOI: https://doi.org/10.1007/s00253-007-1089-3

Venil, C.K., Dufossé, L. & Renuka Devi, P. 2020. Bacterial pigments: sustainable compounds with market potential for pharma and food industry. Frontiers in Sustainable Food Systems, 4: 100. DOI: https://doi.org/10.3389/fsufs.2020.00100

Zaki, A.G., El-Sayed, E.S.R., Abd Elkodous, M. & El-Sayyad, G.S. 2020. Microbial acetylcholinesterase inhibitors for Alzheimer’s therapy: recent trends on extraction, detection, irradiation-assisted production improvement and nano-structured drug delivery. Applied Microbiology and Biotechnology, 104(11): 4717-4735. DOI: https://doi.org/10.1007/s00253-020-10560-9

Zeigler, D.R., Prágai, Z., Rodriguez, S., Chevreux, B., Muffler, A., Albert, T., Bai, R., Wyss, M. & Perkins, J.B. 2008. The origins of 168, W23, and other Bacillus subtilis legacy strains. Journal of Bacteriology, 190(21): 6983-6995. DOI: https://doi.org/10.1128/JB.00722-08

Published

26-12-2022

How to Cite

Hing, . J. N., Jong, B. C. ., Liew, P. W. Y. ., Elly Ellyna, R., & Shamsudin , S. (2022). Gamma Radiation Dose-Response of Gram-Positive and Gram-Negative Bacteria. Malaysian Applied Biology, 51(5), 107–112. https://doi.org/10.55230/mabjournal.v51i5.2370