The Impact of Different Drying Temperatures on Black Ginger Slices in Relation to Different Applications of Growing Media

https://doi.org/10.55230/mabjournal.v51i5.2376

Authors

  • Nurul Azilla Muhammad Faculty of Fisheries and Food Science Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
  • Zuraida Abd Rahman Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400 Selangor, Malaysia
  • Wan Zaliha Wan Sembok Faculty of Fisheries and Food Science Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia

Keywords:

Biochar, black ginger, drying method, soilless system

Abstract

Black ginger (Kaempferia parviflora Wall. Ex. Baker) or “halia hitam” in Malay has been traditionally used as health-promoting herbs in relieving body pains, allergies, gastrointestinal disorders, and fungal infections. Recently, black ginger has increased attention from many researchers to identify its medicinal value to treat diseases. In line with that, the objective of the study is to determine the impact of drying temperatures of black ginger rhizomes slices on the different applications of growing media. The experiment was arranged in a complete randomized design with two factors viz. i) different growing media [cocopeat, cocopeat+rice husk biochar, cocopeat+palm kernel shell biochar, cocopeat+sugarcane bagasse biochar, and cocopeat+coconut shell biochar] and ii) two different drying temperature (50 °C & 75 °C) with three replications. The postharvest parameters were total phenolic compound (TPC), total antioxidant (TA), water activity (Aw), and mineral nutrients content. In conclusion, rhizomes planted in Cocopeat+600g biochar substrates such as sugarcane bagasse, rice husk, palm kernel shell, and coconut shell could be suggested as effective growing media for black ginger cultivation under fertigation system and continued with 75 °C drying temperatures without adversely affecting the postharvest quality of black ginger.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ajayi, O.A., Ola, O.O. & Akinwunmi, O.O. 2017. Effect of drying method on nutritional composition, sensory and antimicrobial properties of ginger (Zinginber officinale). International Food Research Journal, 24(2):614-620.

Akase, T., Shimada, T., Terabayashi, S., Ikeya, Y., Sanada, H. & Aburada, M. 2011. Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice. Journal of Natural Medicines, 65(1): 73-80. DOI: https://doi.org/10.1007/s11418-010-0461-2

Alakali, J., Irtwange, S.V. & Satimehin, A. 2009. Moisture adsorption characteristics of ginger slices. Food Science and Technology, 29(1): 155-164. DOI: https://doi.org/10.1590/S0101-20612009000100024

Ali, B.H., Blunden, G., Tanira, M.O. & Nemmar, A. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food and chemical Toxicology, 46(2): 409-420. DOI: https://doi.org/10.1016/j.fct.2007.09.085

Banjerdpongchai, R., Suwannachot, K., Rattanapanone, V. & Sripanidkulchai, B. 2008. Ethanolic rhizome extract from Kaempferia parviflora Wall. ex. Baker induces apoptosis in HL-60 cells. Asian Pacific Journal of Cancer Prevention, 9(4): 595-600.

Brand-Williams, W., Cuvelier, M.E. & Berset, C.L.W.T. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Chang, C.H., Lin, H.Y., Chang, C.Y. & Liu, Y.C. 2006. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering, 77(3): 478-485. DOI: https://doi.org/10.1016/j.jfoodeng.2005.06.061

Doymaz, I. 2007. Air-drying characteristics of tomatoes. Journal of Food Engineering, 78(4): 1291-1297. DOI: https://doi.org/10.1016/j.jfoodeng.2005.12.047

Eze, J.I. & Agbo, K. E. 2011. Comparative studies of sun and solar drying of peeled and unpeeled ginger. American Journal of scientific and industrial research, 2(2): 136-143. DOI: https://doi.org/10.5251/ajsir.2011.2.2.136.143

Husni, H., Halimi, S. &Syed Omar, S.R. 1990. Panduan analisis tanah dan tumbuhan. Jabatan Sains Tanah, Universiti Putra Malaysia.

Kim, D., Jeong, S. & Lee, C. 2003. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81: 321– 326. DOI: https://doi.org/10.1016/S0308-8146(02)00423-5

Maizura, M., Aminah, A. & Wan Aida, W.M. 2011. Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. International Food Research Journal, 18: 526-531.

Majkowska-Gadomska, J., Mikulewicz, E. & Dobrowolski, A. 2018. Mineral nutrient concentrations in the rhizomes of ginger (Zingiber officinale Rosc.) grown in different horticultural substrates. Journal of Elementology, 23(1): 333-339.

Malakul, W., Ingkaninan, K., Sawasdee, P. & Woodman, O.L. 2011. The ethanolic extract of Kaempferia parviflora reduces ischaemic injury in rat isolated hearts. Journal of Ethnopharmacology, 137(1): 184-191. DOI: https://doi.org/10.1016/j.jep.2011.05.004

Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M.C. & Lerici, C.R. 2000. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11(9): 340-346. DOI: https://doi.org/10.1016/S0924-2244(01)00014-0

Mishra, B.B., Gautam, S. & Sharma, A. 2004. Shelf-life extension of fresh ginger (Zingiber officinale) by gamma irradiation. Journal of Food Science, 69(9): 1. DOI: https://doi.org/10.1111/j.1365-2621.2004.tb09942.x

Noor Aziah, A.A & Komathi, C.A. 2009. Physicochemical and Functional Properties of Peeled and Unpeeled Pumpkin Flour. Journal of Food Science, 72(7): S328-S333. DOI: https://doi.org/10.1111/j.1750-3841.2009.01298.x

Nurul Azilla, M. & Wan Zaliha, W.S. 2017. Effects of different types and rates of biochar substrates on growth performances and yield of Kaempferia parviflora wall. Ex. Baker grown on soilless culture system. In: Proceedings of The International Conference of FoSSA Jember. Agriculture Faculty, Jember University, Indonesia, pp.168-175.

Rahman, Z.A., Shukor, S.A., Abbas, H., Machap, C.A.L., Alias, M.S.B., Mirad, R., Sofiyan, S. & Othman, A.N. 2018. Optimization of extraction conditions for total phenolics and total flavonoids from Kaempferia parviflora rhizomes. Advances in Bioscience and Biotechnology, 9(5): 205-214. DOI: https://doi.org/10.4236/abb.2018.95014

Prachayawarakorn, S., Tia, W., Plyto, N. & Soponronnarit, S. 2008. Drying kinetics and quality attributes of low-fat banana slices dried at high temperature. Journal of Food Engineering, 85: 509-517. DOI: https://doi.org/10.1016/j.jfoodeng.2007.08.011

SAS Institute Inc. 1999. SAS/STAT® 9.1 User’s Guide. SAS Institute Inc, North Carolina. pp. 5136

Tewtrakul, S. & Subhadhirasakul, S. 2008. Effects of compounds from Kaempferia parviflora on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha productions in RAW264.7 macrophage cells. Journal of Ethnopharmacol, 120: 81-84. DOI: https://doi.org/10.1016/j.jep.2008.07.033

Tewtrakul, S., Subhadhirasakul, S. & Kummee, S. 2007. Anti-allergic activity of some selected plants in the Zingiberacea family. Journal of Ethnopharmacology, 109(3): 535-538. DOI: https://doi.org/10.1016/j.jep.2006.08.010

Tewtrakul, S., Subhadhirasakul, S. & Kummee, S. 2008. Anti-allergic activity of compounds from Kaempferia parviflora. Journal of Ethnopharmacology 116: 191-193. DOI: https://doi.org/10.1016/j.jep.2007.10.042

Tewtrakul, S., Subhadhirasakul, S., Karalai, C. & Ponglimanont, C. 2009. Anti-inflammatory effects of compounds from Kaempferia parviflora and Boesenbergia pandurata. Food Chemistry, 115:534-538. DOI: https://doi.org/10.1016/j.foodchem.2008.12.057

Thuwapanichayanan, R., Phowong, C., Jaisut, D. & Štencl, J. 2014. Effects of pretreatments and drying temperatures on drying characteristics, antioxidant properties and color of ginger slice. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62(5): 1125-1134. DOI: https://doi.org/10.11118/actaun201462051125

Turkmen, N., Sari, F. & Velioglu, Y.S. 2006. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chemistry, 99(4): 835-841. DOI: https://doi.org/10.1016/j.foodchem.2005.08.034

Wagesho, Y. & Chandravanshi, B.S. 2015. Levels of essential and non-essential metals in ginger (Zingiber officinale) cultivated in Ethiopia. Springer Plus, 4(1): 107. DOI: https://doi.org/10.1186/s40064-015-0899-5

Wu, H., Hsieh, M.C., Lo, C.Y., Liu, C.B., Sang, S., Ho, C.T. & Pan, M.H. 2010. 6-Shogaol is more effective than 6-gingerol and curcumin in inhibiting 12-O-etradecanoylphorbol 13-acetate-induced tumor promotion in mice. Molecular Nutrition & Food Research, 54(9): 1296-1306. DOI: https://doi.org/10.1002/mnfr.200900409

Yaseer Suhaimi, M., Mohamad, A.M., Mahamud, S. & Khadzir, D. 2015. Effects of substrate on growth and yield of ginger cultivated using soilless culture. Journal Tropical of Agriculture and Food Science 40(2): 159-168.

Yenjai, C., Prasanphen, K., Daodee, S., Wongpanich. V. & Kittakoop, P. 2004. Bioactive flavonoids from Kaempferia parviflora. Fitoterapia, 75(1): 89-92. DOI: https://doi.org/10.1016/j.fitote.2003.08.017

Published

26-12-2022

How to Cite

Muhammad, . N. A., Rahman, . Z. A. ., & Sembok, . W. Z. W. (2022). The Impact of Different Drying Temperatures on Black Ginger Slices in Relation to Different Applications of Growing Media. Malaysian Applied Biology, 51(5), 145–151. https://doi.org/10.55230/mabjournal.v51i5.2376