The Interaction of Immune System in Tumour Microenvironment and Possible Role of Cancer Cell Immnunosensitization for Better Treatment Efficacy: A Review

https://doi.org/10.55230/mabjournal.v52i6.2413

Authors

  • Farhana Khamarudin Department of Biochemistry and Molecular Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia; Institute for Medical Molecular Biotechnology, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
  • Mudiana Muhamad Department of Biochemistry and Molecular Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
  • Jesmine Khan Department of Biochemistry and Molecular Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
  • Mohammad Johari Ibahim Department of Biochemistry and Molecular Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
  • Wan Nor 'Izzah Wan Mohamad Zain Department of Biochemistry and Molecular Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
  • Mardiana Abdul Aziz Department of Pathology, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
  • Nurul Raudzah Adib Ridzuan Department of Anatomy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
  • Sharaniza Ab Rahim Department of Biochemistry and Molecular Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia

Keywords:

cancer, immunosensitization, immune system, immunotherapy, tumour microenvironment

Abstract

Unlike haematologic malignant cells which express cell surface common antigens uniformly and are susceptible to targeted cancer immunotherapy, solid tumours either lack such antigens or have been mutated due to chemotherapy or other therapeutic interventions. Moreover, rapidly dividing tumour cells present complex and dynamic tumour metabolism, which hampers immune cells' reactivity against the tumour cells. Hence solid tumours other than immune-sensitive cancers such as melanoma and renal cell carcinoma are less responsive towards current cellular immunotherapy strategies, including cytokine therapy, dendritic cell-based vaccines, and immune-activating antibodies. Nonetheless, emerging evidence supports combined approaches that target immunosuppressive or antiapoptotic molecules, involving sensitization of the cancer cells by immunosensitizing drugs to express specific ligands that will be recognized by the immune cells via trafficking. This review highlights the immune system's involvement in the tumour microenvironment and the potential significance of cancer cell immunosensitization for improved treatment outcomes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aguilar-Cazares, D., Chavez-Dominguez, R., Carlos-Reyes, A., Lopez-Camarillo, C., Hernadez de la Cruz, O.N. & Lopez-Gonzalez, J.S. 2019. Contribution of angiogenesis to inflammation and cancer. Frontiers in Oncology, 9: 1399. DOI: https://doi.org/10.3389/fonc.2019.01399

André, P., Denis, C., Soulas, C., Bourbon-Caillet, C., Lopez, J., Arnoux, T., Bléry, M., Bonnafous, C., Gauthier, L., Morel, A., Rossi, B., Remark, R., Breso, V., Bonnet, E., Habif, G., Guia, S., Lalanne, A. I., Hoffmann, C., Lantz, O. & Vivier, E. 2018. Anti-NKG2A mab is a checkpoint inhibitor that promotes anti-tumour immunity by unleashing both T and NK cells. Cell, 175(7): 1731-1743.e13. DOI: https://doi.org/10.1016/j.cell.2018.10.014

Atherton, K & Hinen, H. 2022. Vascular anomalies: Other vascular tumours. Dermatologic Clinics, 40(4): 401-423. DOI: https://doi.org/10.1016/j.det.2022.06.011

Audiger, C., Rahman, M.J., Yun, T.J., Tarbell, K.V. & Lesage, S. 2017. The importance of dendritic cells in maintaining immune tolerance. The Journal of Immunology, 198(6): 2223-2231. DOI: https://doi.org/10.4049/jimmunol.1601629

Augustin, R.C., Delgoffe, G.M. & Najjar, Y.G. 2020. Characteristics of the tumour microenvironment that influence immune cell functions: hypoxia, oxidative stress, metabolic alterations. Cancers, 12(12): 3802. DOI: https://doi.org/10.3390/cancers12123802

Bald, T., Quast, T., Landsberg, J., Rogava, M., Glodde, N., Lopez-Ramos, D., Kohlmeyer, J., Riesenberg, S., Van den Boorn-Konijnenberg, D., Hömig-Hölzel, C., Reuten, R., Schadow, B., Weighardt, H., Wenzel, D., Helfrich, I., Schadendorf, D., Bloch, W., Bianchi, M. E., Lugassy, C. & Tüting, T. 2014. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature, 507(7490): 109-113. DOI: https://doi.org/10.1038/nature13111

Barachini, S., Ghelardoni, S. & Madonna, R. 2023. Vascular progenitor cells: From cancer to tissue repair. Journal of Clinical Medicine, 12(6): 2399. DOI: https://doi.org/10.3390/jcm12062399

Bassani, B., Baci, D., Gallazzi, M., Poggi, A., Bruno, A. & Mortara, L. 2019. Natural killer cells as key players of tumour progression and angiogenesis: Old and novel tools to divert their pro-tumour activities into potent anti-tumour effects. Cancers, 11(4): 461. DOI: https://doi.org/10.3390/cancers11040461

Bussard, K.M., Mutkus, L., Stumpf, K., Gomez-Manzano, C. & Marini, F.C. 2016. Tumour-associated stromal cells as key contributors to the tumour microenvironment. Breast Cancer Research, 18: 84. DOI: https://doi.org/10.1186/s13058-016-0740-2

Capone, M., Giannarelli, D., Mallardo, D., Madonna, G., Festino, L., Grimaldi, A.M., Vanella, V., Simeone, E., Paone, M., Palmieri, G., Cavalcanti, E., Caracò, C. & Ascierto, P.A. 2018. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. Journal for ImmunoTherapy of Cancer, 6(1): 74. DOI: https://doi.org/10.1186/s40425-018-0383-1

Chae, Y.K., Arya, A., Iams, W., Cruz, M.R., Chandra, S., Choi, J. & Giles, F. 2018. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). Journal for immunotherapy of cancer, 6(1): 39. DOI: https://doi.org/10.1186/s40425-018-0349-3

Chen, X., Shao, Q., Hao, S., Zhao, Z., Wang, Y., Guo, X., He, Y., Gao, W. & Mao, H. 2017. CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget, 8(8): 13703-13715. DOI: https://doi.org/10.18632/oncotarget.14626

Chim, C.S., Kumar, S.K., Orlowski, R.Z., Cook, G., Richardson, P.G., Gertz, M.A., Giralt, S., Mateos, M. V., Leleu, X. & Anderson, K.C. 2017. Management of relapsed and refractory multiple myeloma: Novel agents, antibodies, immunotherapies and beyond. Leukemia, 32(2): 252-262. DOI: https://doi.org/10.1038/leu.2017.329

Chiossone, L., Dumas, P.-Y., Vienne, M. & Vivier, E. 2018. Natural killer cells and other innate lymphoid cells in cancer. Nature Reviews Immunology, 18(11): 671-688. DOI: https://doi.org/10.1038/s41577-018-0061-z

Coffelt, S.B., Wellenstein, M.D. & de Visser, K.E. 2016. Neutrophils in cancer: neutral no more. Nature Reviews Cancer, 16(7): 431. DOI: https://doi.org/10.1038/nrc.2016.52

Côté-Daigneault, J., Mehandru, S., Ungaro, R., Atreja, A. & Colombel, J.-F. 2016. Potential immunomodulatory effects of statins in inflammatory bowel disease. Inflammatory Bowel Diseases, 22(3): 724-732. DOI: https://doi.org/10.1097/MIB.0000000000000640

Coussens, N.P., Braisted, J.C., Peryea, T., Sittampalam, G. S., Simeonov, A. & Hall, M.D. 2017. Small-molecule screens: A gateway to cancer therapeutic agents with case studies of food and drug administration-approved drugs. Pharmacological Reviews, 69(4): 479-496. DOI: https://doi.org/10.1124/pr.117.013755

de la Cruz-López, K.G., Castro-Muñoz, L.J., Reyes-Hernández, D.O., García-Carrancá, A. & Manzo-Merino, J. 2019. Lactate in the regulation of tumour microenvironment and therapeutic approaches. Frontiers in Oncology, 9: 1143. DOI: https://doi.org/10.3389/fonc.2019.01143

DeSantis, C.E., Lin, C.C., Mariotto, A.B., Siegel, R.L., Stein, K.D., Kramer, J.L., Alteri, R., Robbins, A.S. & Jemal, A. 2014. Cancer treatment and survivorship statistics, 2014. CA: A Cancer Journal for Clinicians, 64(4): 252-271. DOI: https://doi.org/10.3322/caac.21235

Dianat-Moghadam, H., Azizi, M., Eslami-S, Z., Cortés-Hernández, L. E., Heidarifard, M., Nouri, M. & Alix-Panabières, C. 2020. The role of circulating tumour cells in the metastatic cascade: Biology, technical challenges, and clinical relevance. Cancers, 12(4): 867. DOI: https://doi.org/10.3390/cancers12040867

Dijkgraaf, E., Santegoets, S., Reyners, A., Goedemans, R., Wouters, M., Kenter, G., Van Erkel, A., Van Poelgeest, M., Nijman, H., Van der Hoeven, J., Welters, M., Van der Burg, S. & Kroep, J. 2015. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-α2b in patients with recurrent epithelial ovarian cancer. Annals of Oncology, 26(10): 2141-2149. DOI: https://doi.org/10.1093/annonc/mdv309

Ekins, S., Puhl, A.C., Zorn, K.M., Lane, T.R., Russo, D.P., Klein, J.J., Hickey, A.J. & Clark, A.M. (2019). Exploiting machine learning for end-to-end drug discovery and development. Nature Materials, 18(5): 435-441. DOI: https://doi.org/10.1038/s41563-019-0338-z

Faes, S., Santoro, T., Demartines, N. & Dormond, O. 2017. Evolving significance and future relevance of anti-angiogenic activity of mTOR inhibitors in cancer therapy. Cancers, 9(11): 152. DOI: https://doi.org/10.3390/cancers9110152

Fan, T., Sun, G., Sun, X., Zhao, L., Zhong, R. & Peng, Y. 2019. Tumour energy metabolism and potential of 3-bromopyruvate as an inhibitor of aerobic glycolysis: implications in tumour treatment. Cancers, 11(3): 317. DOI: https://doi.org/10.3390/cancers11030317

Fong, C.W. 2015. Permeability of the blood-brain barrier: molecular mechanism of transport of drugs and physiologically important compounds. The Journal of Membrane Biology, 248(4): 651-669. DOI: https://doi.org/10.1007/s00232-015-9778-9

Forkasiewicz, A., Dorociak, M., Stach, K., Szelachowski, P., Tabola, R. & Augoff, K. 2020. The usefulness of lactate dehydrogenase measurements in current oncological practice. Cellular & Molecular Biology Letters, 25(1): 35. DOI: https://doi.org/10.1186/s11658-020-00228-7

Fu, C. & Jiang, A. 2018. Dendritic cells and CD8 T cell immunity in tumour microenvironment. Frontiers in Immunology, 9: 3059. DOI: https://doi.org/10.3389/fimmu.2018.03059

Fucikova, J., Truxova, I., Hensler, M., Becht, E., Kasikova, L., Moserova, I., Vosahlikova, S., Klouckova, J., Church, S.E., Cremer, I., Kepp, O., Kroemer, G., Galluzzi, L., Salek, C. & Spisek, R. 2016. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood, 128(26): 3113-3124. DOI: https://doi.org/10.1182/blood-2016-08-731737

Graham, K. & Unger, E. 2018. Overcoming tumour hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. International Journal of Nanomedicine, 13: 6049. DOI: https://doi.org/10.2147/IJN.S140462

Héninger, E., Krueger, T.E. & Lang, J.M. 2015. Augmenting antitumour immune responses with epigenetic modifying agents. Frontiers in Immunology, 6: 29. DOI: https://doi.org/10.3389/fimmu.2015.00029

Jacobs, J.M., Pensak, N.A., Sporn, N.J., MacDonald, J.J., Lennes, I.T., Safren, S.A., Pirl, W.F., Temel, J.S. & Greer, J.A. 2017. Treatment satisfaction and adherence to oral chemotherapy in patients with cancer. Journal of Oncology Practice, 13(5): e474-e485. DOI: https://doi.org/10.1200/JOP.2016.019729

Janikashvili, N., Bonnotte, B., Katsanis, E. & Larmonier, N. 2011. The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumour-induced tolerance. Clinical and Developmental Immunology, 2011: 430394. DOI: https://doi.org/10.1155/2011/430394

Jones, D.T., Banito, A., Grünewald, T.G., Haber, M., Jäger, N., Kool, M., Milde, T., Molenaar, J.J., Nabbi, A., Pugh, T.J., Schleiermacher, G., Smith, M.A., Westermann, F. & Pfister, S.M. 2019. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nature Reviews Cancer, 19(8): 420-438. DOI: https://doi.org/10.1038/s41568-019-0169-x

Justus, C.R., Sanderlin, E.J. & Yang, L.V. 2015. Molecular connections between cancer cell metabolism and the tumour microenvironment. International journal of molecular sciences, 16(5): 11055-11086. DOI: https://doi.org/10.3390/ijms160511055

Kalinski, P. & Talmadge, J.E. 2017. Tumour immuno-environment in cancer progression and therapy. In: Tumour Immune Microenvironment in Cancer Progression and Cancer Therapy. K. Pawel. Springer Cham. pp. 1-18. DOI: https://doi.org/10.1007/978-3-319-67577-0_1

Katayama, Y., Uchino, J., Chihara, Y., Tamiya, N., Kaneko, Y., Yamada, T. & Takayama, K. 2019. Tumour neovascularization and developments in therapeutics. Cancers, 11(3): 316. DOI: https://doi.org/10.3390/cancers11030316

Kitamura, T., Qian, B.-Z. & Pollard, J.W. 2015. Immune cell promotion of metastasis. Nature Reviews Immunology, 15(2): 73-86. DOI: https://doi.org/10.1038/nri3789

Kumar, S., Ahmad, M.K., Waseem, M. & Pandey, A.K. 2015. Drug targets for cancer treatment: An overview. Medical Chemistry, 5(3): 115-123. DOI: https://doi.org/10.4172/2161-0444.1000252

Lang, P.A., Crome, S.Q., Xu, H.C., Lang, K.S., Chapatte, L., Deenick, E.K., Grusdat, M., Pandyra, A.A., Pozdeev, V.I., Wang, R., Holderried, T.A., Cantor, H., Diefenbach, A., Elford, A.R., McIlwain, D.R., Recher, M., Häussinger, D., Mak, T.W., & Ohashi, P.S. 2020. NK cells regulate CD8+ T cell mediated autoimmunity. Frontiers in Cellular and Infection Microbiology, 10. DOI: https://doi.org/10.3389/fcimb.2020.00036

Lombardi, A., Tsomos, E., Hammerstad, S.S. & Tomer, Y. 2018. Interferon alpha: The key trigger of type 1 diabetes. Journal of Autoimmunity, 94: 7-15. DOI: https://doi.org/10.1016/j.jaut.2018.08.003

Matsushita, M. & Kawaguchi, M. 2018. Immunomodulatory effects of drugs for effective cancer immunotherapy. Journal of Oncology, 2018: 8653489. DOI: https://doi.org/10.1155/2018/8653489

Melief, C.J., Welters, M.J., Vergote, I., Kroep, J.R., Kenter, G.G., Ottevanger, N., Tjalma, W.A., Denys, H., Poelgeest, M.V., Nijman, H.W., Reyners, A.K., Velu, T., Goffin, F., Lalisang, R., Krebber, W., Hooftman, L., Visscher, S., Blumenstein, B.A., Stead, R.B. & Burg, S.V. 2019. A strong HPV-specific T-cell response after chemo-immunotherapy for advanced cervical cancer is associated with prolonged survival. Cancer Research Cancer Research, 79(13): CT002. DOI: https://doi.org/10.1158/1538-7445.AM2019-CT002

Miranda-Gonçalves, V., Lameirinhas, A., Henrique, R. & Jerónimo, C. 2018. Metabolism and epigenetic interplay in cancer: regulation and putative therapeutic targets. Frontiers in Genetics, 9: 427. DOI: https://doi.org/10.3389/fgene.2018.00427

Mokhtari, R.B., Homayouni, T.S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B. & Yeger, H. 2017. Combination therapy in combating cancer. Oncotarget, 8(23): 38022. DOI: https://doi.org/10.18632/oncotarget.16723

Murad, J.M., Graber, D.J. & Sentman, C.L. 2018. Advances in the use of natural receptor-or ligand-based chimeric antigen receptors (CARs) in haematologic malignancies. Best Practice & Research Clinical Haematology, 31(2): 176-183. DOI: https://doi.org/10.1016/j.beha.2018.03.003

Mushtaq, M.U., Papadas, A., Pagenkopf, A., Flietner, E., Morrow, Z., Chaudhary, S.G. & Asimakopoulos, F. 2018. Tumour matrix remodeling and novel immunotherapies: the promise of matrix-derived immune biomarkers. Journal for Immunotherapy Of Cancer, 6: 65. DOI: https://doi.org/10.1186/s40425-018-0376-0

Nagarajan, A., Malvi, P. & Wajapeyee, N. 2016. Oncogene-directed alterations in cancer cell metabolism. Trends in Cancer, 2(7): 365-377. DOI: https://doi.org/10.1016/j.trecan.2016.06.002

Nierengarten, M.B. 2023. Annual report to the nation on the status of cancer. Cancer, 129: 8-8. DOI: https://doi.org/10.1002/cncr.34586

Okeke, E.B. & Uzonna, J.E. 2019. The pivotal role of regulatory T cells in the regulation of innate immune cells. Frontiers in Immunology, 10: 680. DOI: https://doi.org/10.3389/fimmu.2019.00680

Oun, R., Moussa, Y.E. & Wheate, N.J. 2018. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton transactions, 47(19): 6645-6653. DOI: https://doi.org/10.1039/C8DT00838H

Palomino-Morales, R., Perales, S., Torres, C., Linares, A. & Alejandre, M.J. 2016. Effect of HMG-CoA reductase inhibition on vascular smooth muscle cells extracellular matrix production: Role of RhoA. Current Vascular Pharmacology, 14(4): 345-352. DOI: https://doi.org/10.2174/1570161114666160229115553

Parker, K. H., Beury, D. W., & Ostrand-Rosenberg, S. 2015. Myeloid-derived suppressor cells: Critical cells driving immune suppression in the tumour microenvironment. Advances in Cancer Research, 128: 95-139. DOI: https://doi.org/10.1016/bs.acr.2015.04.002

Patel, M., Horgan, P.G., McMillan, D.C. & Edwards, J. 2018. NF-κB pathways in the development and progression of colorectal cancer. Translational Research, 197: 43-56. DOI: https://doi.org/10.1016/j.trsl.2018.02.002

Pereira, F.V., Melo, A.C., Low, J.S., De Castro, Í. A., Braga, T. T., Almeida, D.C., Batista de Lima, A. G., Hiyane, M.I., Correa-Costa, M., Andrade-Oliveira, V., Origassa, C.S., Pereira, R.M., Kaech, S.M., Rodrigues, E.G. & Câmara, N.O. 2018. Metformin exerts antitumour activity via induction of multiple death pathways in tumour cells and activation of a protective immune response. Oncotarget, 9(40): 25808. DOI: https://doi.org/10.18632/oncotarget.25380

Piątkiewicz, P., Bernat-Karpińska, M., Miłek, T., Rabijewski, M. & Rosiak, E. 2016. NK cell count and glucotransporter 4 (GLUT4) expression in subjects with type 2 diabetes and colon cancer. Diabetology & metabolic syndrome, 8: 38. DOI: https://doi.org/10.1186/s13098-016-0152-6

Poornima, P., Kumar, J. D., Zhao, Q., Blunder, M., & Efferth, T. 2016. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacological Research, 111: 290-302. DOI: https://doi.org/10.1016/j.phrs.2016.06.018

Popovic, A., Jaffee, E. M., & Zaidi, N. (2018). Emerging strategies for combination checkpoint modulators in cancer immunotherapy. The Journal of Clinical Investigation, 128(8): 3209-3218. DOI: https://doi.org/10.1172/JCI120775

Qureshy, Z., Johnson, D.E. & Grandis, J.R. 2020. Targeting the JAK/STAT pathway in solid tumours. Journal of Cancer Metastasis and Treatment, 6. DOI: https://doi.org/10.20517/2394-4722.2020.58

Reiter, R.J., Rosales-Corral, S.A., Tan, D.-X., Acuna-Castroviejo, D., Qin, L., Yang, S.-F. & Xu, K. 2017. Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. International journal of molecular sciences, 18(4): 843. DOI: https://doi.org/10.3390/ijms18040843

Ribas, A. & Wolchok, J.D. 2018. Cancer immunotherapy using checkpoint blockade. Science, 359(6382): 1350-1355. DOI: https://doi.org/10.1126/science.aar4060

Saleh, R. & Elkord, E. 2019. Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Letters, 457: 168-179. DOI: https://doi.org/10.1016/j.canlet.2019.05.003

Sarrabayrouse, G., Pich, C., Teiti, I. & Tilkin-Mariame, A.F. 2017. Regulatory properties of statins and rho gtpases prenylation inhibitiors to stimulate melanoma immunogenicity and promote anti-melanoma immune response. International journal of cancer, 140(4): 747-755. DOI: https://doi.org/10.1002/ijc.30422

Seifert, A. M., Eymer, A., Heiduk, M., Wehner, R., Tunger, A., Von Renesse, J., Decker, R., Aust, D. E., Welsch, T., Reissfelder, C., Weitz, J., Schmitz, M. & Seifert, L. 2020. PD-1 expression by lymph node and Intratumoural regulatory T cells is associated with lymph node metastasis in pancreatic cancer. Cancers, 12(10): 2756. DOI: https://doi.org/10.3390/cancers12102756

Senapati, S., Mahanta, A. K., Kumar, S. & Maiti, P. 2018. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3: 7. DOI: https://doi.org/10.1038/s41392-017-0004-3

Shaul, M.E. & Fridlender, Z.G. 2018. Cancer-related circulating and tumour-associated neutrophils-subtypes, sources and function. The FEBS Journal, 285(23): 4316-4342. DOI: https://doi.org/10.1111/febs.14524

Shaul, M.E. & Fridlender, Z.G. 2019. Tumour-associated neutrophils in patients with cancer. Nature Reviews Clinical Oncology, 16(10): 601-620. DOI: https://doi.org/10.1038/s41571-019-0222-4

Shishir, T.A., Khan, R. & Nirzhor, S. 2018. The critical role of tumour microenvironment in cancer evolution and metastasis. International Journal of Business Research, 9: 244-258.

Siegel, R.L., Miller, K.D., Fuchs, H.E. & Jemal, A. 2021. Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1): 7-33. DOI: https://doi.org/10.3322/caac.21654

Sørensen, B.S. & Horsman, M.R. 2020. Tumour hypoxia: impact on radiation therapy and molecular pathways. Frontiers in oncology, 10: 562. DOI: https://doi.org/10.3389/fonc.2020.00562

Sun, L., Suo, C., Li, S.-t., Zhang, H., & Gao, P. 2018. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1870(1): 51-66. DOI: https://doi.org/10.1016/j.bbcan.2018.06.005

Tafesse, T.B., Bule, M.H., Khan, F., Abdollahi, M. & Amini, M. 2020. Developing novel anticancer drugs for targeted populations: An Update. Current Pharmaceutical Design. DOI: https://doi.org/10.2174/1381612826666201124111748

Tan, H.-Y., Wang, N., Lam, W., Guo, W., Feng, Y. & Cheng, Y.-C. 2018. Targeting tumour microenvironment by tyrosine kinase inhibitor. Molecular cancer, 17(1): 43. DOI: https://doi.org/10.1186/s12943-018-0800-6

Tao, X., Cai, L., Chen, L., Ge, S. & Deng, X. 2019. Effects of metformin and Exenatide on insulin resistance and AMPKα-SIRT1 molecular pathway in PCOS rats. Journal of Ovarian Research, 12(1): 86. DOI: https://doi.org/10.1186/s13048-019-0555-8

Ugel, S., De Sanctis, F., Mandruzzato, S. & Bronte, V. 2015. Tumour-induced myeloid deviation: When myeloid-derived suppressor cells meet tumour-associated macrophages. The Journal of Clinical Investigation, 125(9): 3365-3376. DOI: https://doi.org/10.1172/JCI80006

Ura, B., Di Lorenzo, G., Romano, F., Monasta, L., Mirenda, G., Scrimin, F. & Ricci, G. 2018. Interstitial fluid in gynecologic tumours and its possible application in the clinical practice. International journal of molecular sciences, 19(12): 4018. DOI: https://doi.org/10.3390/ijms19124018

Vacchelli, E., Ma, Y., Baracco, E.E., Sistigu, A., Enot, D.P., Pietrocola, F., Yang, H., Adjemian, S., Chaba, K., Semeraro, M., Signore, M., De Ninno, A., Lucarini, V., Peschiaroli, F., Businaro, L., Gerardino, A., Manic, G., Ulas, T., Günther, P., Schultze, J.L., Kepp, O., Stoll, G., Lefebvre, C., Mulot, C., Castoldi, F., Rusakiewicz, S., Ladoire, S., Apetoh, L., Bravo-San Pedro, J.M., Lucattelli, M., Delarasse, C., Boige, V., Ducreux, M., Delaloge, S., Borg, C., André, F., Schiavoni, G., Vitale, I., Laurent-Puig, P., Mattei, F., Zitvogel, L. & Kroemer, G. 2015. Chemotherapy-induced antitumour immunity requires formyl peptide receptor 1. Science, 350(6263): 972-978. DOI: https://doi.org/10.1126/science.aad0779

Volpedo, G., Pacheco-Fernández, T., de Carvalho Clímaco, M. & Satoskar, A.R. (2021). The Fas/FasL pathway as a target for enhancing anticancer adoptive cell therapy. In: Immunotherapy in Resistant Cancer: From the Lab Bench Work to Its Clinical Perspectives. J. Morales-Montor and M. Segovia-Mendoza (Eds.). Elsevier. pp. 47-68. DOI: https://doi.org/10.1016/B978-0-12-822028-3.00013-3

Wagner, M., & Koyasu, S. 2019. Cancer immunoediting by innate lymphoid cells. Trends in Immunology, 40(5): 415-430. DOI: https://doi.org/10.1016/j.it.2019.03.004

Wang, Z., Guan, D., Wang, S., Chai, L. Y. A., Xu, S. & Lam, K.-P. 2020. Glycolysis and oxidative phosphorylation play critical roles in natural killer cell receptor-mediated natural killer cell functions. Frontiers in Immunology, 11: 202. DOI: https://doi.org/10.3389/fimmu.2020.00202

Xu, P., Yin, K., Tang, X., Tian, J., Zhang, Y., Ma, J., Xu, H., Xu, Q. & Wang, S. 2019. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumour-bearing mice. Biomedicine & Pharmacotherapy, 120: 109458. DOI: https://doi.org/10.1016/j.biopha.2019.109458

Yimit, A., Adebali, O., Sancar, A. & Jiang, Y. 2019. Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nature Communications, 10: 309. DOI: https://doi.org/10.1038/s41467-019-08290-2

You, L., Wu, W., Wang, X., Fang, L., Adam, V., Nepovimova, E., Wu, Q. & Kuca, K. 2020. The role of hypoxia-inducible factor 1 in tumour immune evasion. Medicinal Research Reviews, 41(3): 1622-1643. DOI: https://doi.org/10.1002/med.21771

Zaiatz-Bittencourt, V., Finlay, D.K. & Gardiner, C.M. 2018. Canonical TGF-β signaling pathway represses human NK cell metabolism. The Journal of Immunology, 200(12): 3934-3941. DOI: https://doi.org/10.4049/jimmunol.1701461

Zer, A., Sung, M.R., Walia, P., Khoja, L., Maganti, M., Labbe, C., Shepherd, F.A., Bradbury, P.A., Feld, R., Liu, G., Iazzi, M., Zawisza, D., Nouriany, N. & Leighl, N.B. 2018. Correlation of neutrophil to lymphocyte ratio and absolute neutrophil count with outcomes with PD-1 Axis inhibitors in patients with advanced non-small-cell lung cancer. Clinical Lung Cancer, 19(5): 426-434. e421. DOI: https://doi.org/10.1016/j.cllc.2018.04.008

Published

30-12-2023

How to Cite

Khamarudin, F., Muhamad, M., Khan, J. ., Ibahim, M. J. ., Wan Mohamad Zain, W. N. ’Izzah, Abdul Aziz, M., Adib Ridzuan, N. R., & Ab Rahim, S. (2023). The Interaction of Immune System in Tumour Microenvironment and Possible Role of Cancer Cell Immnunosensitization for Better Treatment Efficacy: A Review. Malaysian Applied Biology, 52(6), 11–21. https://doi.org/10.55230/mabjournal.v52i6.2413

Issue

Section

Review Articles

Funding data