Anti-Teratogenic Potential of Exogenously Applied Over-The-Counter L-Glutathione Supplement on Ethanol-Induced Teratogenesis in Zebrafish (Danio rerio)
Keywords:
ZEBRAFISH, ETHANOL, TOXICITY, TERATOGENICITYAbstract
Glutathione is the body’s most abundant endogenous non-enzymatic antioxidant and is used as a substrate for free radical scavenging in the body, especially during ethanol metabolism. This study aims to shift the paradigm of using glutathione as a whitening agent into a potent antioxidant for therapy, particularly for ethanol-induced teratogenesis in the Philippines. Zebrafish embryos were treated with glutathione at various time points of ethanol exposure and concentration. Pre-treatments, co-treatments, and post-treatments with 100 μM glutathione solution were done to assess the most appropriate time point for glutathione intake upon exposure of the embryo to ethanol. Eye diameter and otic vesicle diameter were chosen as morphological parameters because dysmorphogenesis of these organs resembles mammalian fetal alcohol syndrome disorders. For eye diameter, alleviation of microphthalmia by glutathione was seen in pre-treatment (1% ethanol only) and post-treatment (1% & 1.5%) while co-treatment did not exhibit rescue for eye diameter reduction. For otic vesicle diameter, pre- and co-treatment with glutathione did not exhibit any changes in size but post-treatment showed abnormal enlargement suggesting possible teratogenic effect across all ethanol concentrations. The 2,2-diphenylpicryl-1-hydrazine (DPPH) assay was used as a confirmatory test for the free radical scavenging activity (FRSA) of treated tissues. Pre-treatment with GSH at 1% ethanol showed the highest FRSA while post-treatment showed FRSA insignificantly different to controls. This study suggests that glutathione can alleviate oxidative stress in embryo development which may lead to dysmorphogenesis and that supplementation before and after ethanol exposure may be a viable form of therapy for ethanol-induced teratogenesis.
Downloads
Metrics
References
Ali, S, Champagne D.L., Alia, A. & Richardson, M.K. 2011. Large-scale analysis of acute ethanol exposure in zebrafish development: A critical time window and resilience. PLoS ONE, 6(5): e20037. DOI: https://doi.org/10.1371/journal.pone.0020037
Arenzana, F.J., Carvan, M.J., Aijón, J., Sánchez-González, R., Arévalo, R. & Porteros, A. 2006. Teratogenic effects of ethanol exposure on zebrafish visual system development. Neurotoxicology and Teratology, 28(3): 342–348. DOI: https://doi.org/10.1016/j.ntt.2006.02.001
Arnold, M.C., Forte, J.E., Osterberg, J.S. & Di Giulio, R.T. 2016. Antioxidant rescue of selenomethionine-induced teratogenesis in zebrafish embryos. Archives of Environmental Contamination and Toxicology, 70(2): 311-20. DOI: https://doi.org/10.1007/s00244-015-0235-7
Bilotta, J., Barnett, J.A., Hancock, L. & Saszik, S. 2004. Ethanol exposure alters zebrafish development: A novel model of fetal alcohol syndrome. Neurotoxicology and Teratology, 26(6): 737-743. DOI: https://doi.org/10.1016/j.ntt.2004.06.011
Bilotta, J., Saszik, S., Givin, C.M., Hardesty, H.R., & Sutherland, S.E. 2002. Effects of embryonic exposure to ethanol on zebrafish visual function. Neurotoxicology and Teratology, 24(6): 759–766. DOI: https://doi.org/10.1016/S0892-0362(02)00319-7
Damgaard, T.D., Otte, J.A.H., Meinert, L., Jensen, K. & Lametsch, R. 2014. Antioxidant capacity of hydrolyzed porcine tissues. Food Science & Nutrition, 2: 282 288. DOI: https://doi.org/10.1002/fsn3.106
Guérin, P., El Mouatassim, S. & Ménézo, Y. 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2): 175–189. DOI: https://doi.org/10.1093/humupd/7.2.175
Halili, J.F.A. and Quilang, J.P.Q. 2011. The zebrafish embryo toxicity and teratogenicity assay. The Philippine Biota, XLIV: 63-71.
Hammond, K.L., van Eeden, F.J.M. & Whitfield, T.T. 2010. Repression of Hedgehog signalling is required for the acquisition of dorsolateral cell fates in the zebrafish otic vesicle. Development, 137(8): 1361-1371. DOI: https://doi.org/10.1242/dev.045666
Ikonomidou, C., Bittigau, P., Koch, C., Genz, K., Stefovska, V. & Hörster, F. 2000. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science, 287(5455): 1056-1060. DOI: https://doi.org/10.1126/science.287.5455.1056
Kashyap, B., Frederickson, L.C. & Stenkamp, D.L. 2007. Mechanisms for persistent microphthalmia following ethanol exposure during retinal neurogenesis in zebrafish embryos. Visual Neuroscience, 24(3): 409–421. DOI: https://doi.org/10.1017/S0952523807070423
Kelly, K.A., Havrilla, C.M., Brady, T.C., Abramo, K.H. & Levin, E.D. 1998. Oxidative stress in toxicology: Established mammalian and emerging piscine model systems. Environmental Health Perspectives, 106(7): 375-384. DOI: https://doi.org/10.1289/ehp.98106375
Kotch, L.E., Chen, S.Y. & Sulik, K.K. 1995. Ethanol-induced teratogenesis: Free radical damage as a possible mechanism. Teratology, 52(3): 128-36. DOI: https://doi.org/10.1002/tera.1420520304
Kumar, S.P. 1982. Fetal alcohol syndrome. Mechanisms of teratogenesis. Annals of Clinical and Laboratory Science, 12(4): 54–257.
Lieschke, G.J. & Currie, P.D. 2007. Animal models of human disease: Zebrafish swim into view. Nature Reviews Genetics, 8: 353–367. DOI: https://doi.org/10.1038/nrg2091
Loucks, E. & Ahlgren, S. 2012. Assessing teratogenic changes in a zebrafish model of fetal alcohol exposure. Journal of Visualized Experiments, 61: 3704. DOI: https://doi.org/10.3791/3704
Lu, J. & Holmgren, A. 2014. The thioredoxin antioxidant system. Free Radical Biology and Medicine, 66: 75-87. DOI: https://doi.org/10.1016/j.freeradbiomed.2013.07.036
Marrs, J.A., Clendenon, S.G., Ratcliffe, D.R., Fielding, S.M. & Bosron, W.F. 2011. Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement. Alcohol, 44(7-8): 707-15. DOI: https://doi.org/10.1016/j.alcohol.2009.03.004
Massarsky, A., Kozal, J.S. & Di Giulio, R.T. 2017. Glutathione and zebrafish: Old assays to address a current issue. Chemosphere, 168: 707-715. DOI: https://doi.org/10.1016/j.chemosphere.2016.11.004
Mukherjee, R.A.S., Hollins, S. & Turk, J. 2006. Fetal alcohol spectrum disorder: An overview. Journal of the Royal Society of Medicine, 99(6): 298-302. DOI: https://doi.org/10.1177/014107680609900616
Muralidharan, P., Sarmah, S. & Marrs JA. 2015. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol, 49(2): 149-63. DOI: https://doi.org/10.1016/j.alcohol.2014.11.001
Reimers, M.J., La Du, J.K., Periera, C.B., Giovanini, J. & Tanguay, R.L. 2006. Ethanol-dependent toxicity in zebrafish is partially attenuated by antioxidants. Neurotoxicology and Teratology, 28(4): 497–508. DOI: https://doi.org/10.1016/j.ntt.2006.05.007
Smiley, J.F., Saito, M., Bleiwas, C., Masiello, K., Ardekani, B., Guilfoyle, D.N., Gerum, S., Wilson, D.A. & Vadasz, C. 2015. Selective reduction of cerebral cortex GABA neurons in a late gestation model of fetal alcohol spectrum disorder. Alcohol, 49(6): 571-80. DOI: https://doi.org/10.1016/j.alcohol.2015.04.008
Soares, A.R., Pereira, P.M., Ferreira, V., Reverendo, M., Simões, J., Bezerra, A.R., Mouram, G.R. & Santos, M.A. 2012. Ethanol exposure induces upregulation of specific microRNAs in zebrafish embryos. Toxicological Sciences, 127(1): 18-28. DOI: https://doi.org/10.1093/toxsci/kfs068
Ufer, C. & Wang, C.C. 2011. The roles of glutathione peroxidases during embryo development. Frontiers in Molecular Neuroscience, 4: 12. DOI: https://doi.org/10.3389/fnmol.2011.00012
Wentzel, P. & Eriksson, U.J. 2006. Ethanol-induced fetal dysmorphogenesis in the mouse is diminished by high antioxidative capacity of the mother. Toxicological Sciences, 92(2): 416-22. DOI: https://doi.org/10.1093/toxsci/kfl024
Zamora, L.Y. & Lu, Z. 2013. Alcohol-induced morphological deficits in the development of octavolateral organs of the zebrafish (Danio rerio). Zebrafish, 10(1): 52–61. DOI: https://doi.org/10.1089/zeb.2012.0830
Zhou, D., Lebel, C., Lepage, C., Rasmussen, C., Evans, A., Wyper, K., Pei, J., Andrew, G., Massey, A., Massey, D. & Beaulieu, C. 2011. Developmental cortical thinning in fetal alcohol spectrum disorders. Neuroimage, 58(1): 16-25. DOI: https://doi.org/10.1016/j.neuroimage.2011.06.026
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission