Genetic Variability of Wild Populations of Invasive Redclaw Crayfish (Cherax quadricarinatus) von Martens 1868 Across Peninsular Malaysia

https://doi.org/10.55230/mabjournal.v52i1.2427

Authors

  • Mohamad Zulkarnain Mohd Dali School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Kampus Besut, Terengganu, Malaysia
  • Muhammad Syafiq Aiman Mohd Nasir School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Kampus Besut, Terengganu, Malaysia
  • Aliyu Garba Khaleel School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Kampus Besut, Terengganu, Malaysia; Department of Animal Science, Faculty of Agriculture and Agricultural Technology, Kano University of Science and Technology, Wudil, Kano State, Nigeria
  • Nor Ainsyafikah Madiran School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Kampus Besut, Terengganu, Malaysia
  • Norshida Ismail School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, Malaysia
  • Ahmad Syazni Kamarudin Universiti Sultan Zainal Abidin

Keywords:

Biological invasion, mitochondrial DNA, Cherax quadricarinatus, genetic structure

Abstract

The redclaw crayfish had been listed as an invasive species in Malaysia following the various negative impacts displayed on both environment and economy. The species are largely culture in Malaysia for food, but unluckily escaped and expands to several waterbodies across the country. For effective control management of redclaw crayfish species, a total of 52 wild samples were collected from six locations in Peninsular Malaysia and analyzed using a 16S mitochondrial DNA to assess their genetic diversity and introduction history. Five haplotypes were detected associated with an overall low genetic diversity (Hd = 0.385, π = 0.00133). A single genetic structure was detected with a phylogenetic relationship showing two clusters related to the haplotypes from Australia and Papua New Guinea. The finding of this study provides the basic data that will aid the appropriate Malaysian authorities for both monitoring and management strategies of redclaw crayfish in Peninsular Malaysia.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdullahi, A.Y., Nasir, M., Khaleel, A.G., Ashiru, R.M., Zango, M.H., Madaki, S., Ha, H.C., Ismail, N. & Ahmad-Syazni, K. 2021. Genetic diversity of broiler chicken brands raised in arid and semi-arid zones of northern Nigeria using mitochondrial DNA. FUDMA Journal of Sciences, 5(2): 456-461. DOI: https://doi.org/10.33003/fjs-2021-0502-650

Ahmad-Syazni, K., Khaleel, A.G., Norshida, I., Connie, F.K., Nguang, S.I. & Ha, H.C. 2017. Population structure of swamp eel Monopterus albus in East Coast of Peninsular Malaysia inferred from 16S mitochondrial DNA. World Applied Sciences Journal, 35: 1392-1399.

Azhar, W.F.A.W.Z. & Azmir, I.A. 2019. Genetic identification of selected ornamental fishes in Seremban, Negeri Sembilan. Journal of Academia, 7(2): 56-66.

Azmi, N.A.R., Ahmad, L.W.Z., Kambol, R., Mohamad, S.A.S., Aris, F., Zakaria, N.A. & Yunus, N.M. 2022. Genetic variation analysis between wild and cultured Pangasianodon hypopthalmus using COI and Cytochrome b among Asian countries. Science Letters, 16(1): 84-101. DOI: https://doi.org/10.24191/sl.v16i1.15422

Baker, N., De Bruyn, M., & Mather, P. B. 2008. Patterns of molecular diversity in wild stocks of the redclaw crayfish (Cherax quadricarinatus) from northern Australia and Papua New Guinea: Impacts of Plio‐Pleistocene landscape evolution. Freshwater Biology, 53(8): 1592-1605. DOI: https://doi.org/10.1111/j.1365-2427.2008.01996.x

Carvalho, D.C., Oliveira, D.A., Sampaio, I. & Beheregaray, L.B. 2014. Analysis of propagule pressure and genetic diversity in the invasibility of a freshwater apex predator: the peacock bass (genus Cichla). Neotropical Ichthyology, 12(1): 105-116. DOI: https://doi.org/10.1590/S1679-62252014000100011

Cassey, P., Delean, S., Lockwood, J.L., Sadowski, J.S. & Blackburn, T.M. 2018. Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biology, 16(4): e2005987. DOI: https://doi.org/10.1371/journal.pbio.2005987

Chang, A.K.W. 2001. Analysis of the performance of a formulated feed in comparison with a commercial prawn feed for the crayfish, Cherax quadricarinatus. World Aquaculture-Baton Rouge, 32(2): 19–23.

Crandall, K.A. & Fitzpatrick Jr., J.F. 1996. Crayfish molecular systematics: Using a combination of procedures to estimate phylogeny. Systematic Biology, 45(1): 1-26. DOI: https://doi.org/10.1093/sysbio/45.1.1

Dali, M.Z.M., Aidi, Q., Nasir, M.S.A., Norshida, I. & Ahmad-Syazni, K. 2022. Genetic diversity of redclaw crayfish Cherax quadricarinatus von Martens 1868 using 16S mitochondrial DNA marker. The 4th International Symposium on Marine and Fisheries Research. IOP Conference Series: Earth and Environmental Science, 919: 012023. DOI: https://doi.org/10.1088/1755-1315/919/1/012023

Edgerton, B.F., Evans, L.H., Stephens, F.J. & Overstreet, R.M. 2002. Synopsis of freshwater crayfish diseases and commensal organisms. Aquaculture, 206: 57-135. DOI: https://doi.org/10.1016/S0044-8486(01)00865-1

Excoffier, L. & Lischer, H.E. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3): 564-567. DOI: https://doi.org/10.1111/j.1755-0998.2010.02847.x

Ha, H.C., Nguang, S.I., Zarizal, S., Komilus, C.F., Norshida, I. & Ahmad-Syazni, K. 2017. Genetic diversity of kampung chicken (Gallus gallus domesticus) from selected areas in East Coast Peninsular Malaysia inferred from partial control region of mitochondrial DNA. Malaysian Applied Biology, 46(1): 63–70.

Haubrock, P.J., Oficialdegui, F.J., Zeng, Y., Patoka, J., Yeo, D.C.J. & Kouba, A. 2021. The redclaw crayfish: A prominent aquaculture species with invasive potential in tropical and subtropical biodiversity hotspots. Reviews in Aquaculture, 13: 1488-1530. DOI: https://doi.org/10.1111/raq.12531

Idrus, S.N.S., Sallehuddin, A.S., Ahmad-Syazni, K., Dali, M.Z.M., Kassim, Z., Lokman, M.I.N. & Norshida, I. 2021. Length-weight relationship and condition factor of Australian red claw crayfish (Cherax quadricarinatus) from three locations in Peninsular Malaysia. Bioscience Research, 18(SI-2): 413-420.

Khaleel, A.G., Ismail, N. & Ahmad-Syazni, K., 2021. Introduction of invasive peacock bass (Cichla spp.), its rapid distribution and future impact on freshwater ecosystem in Malaysia. Croatian Journal of Fisheries, 79(1), 33-46. DOI: https://doi.org/10.2478/cjf-2021-0004

Khaleel, A.G., Ha, H.C. & Ahmad-Syazni, K. 2019. Different population of Malaysia swamp eel in East and Southeast Asia inferred from partial 16S mitochondrial DNA. Bioscience Research, 16(SI): 01-09.

Khaleel, A.G., Nasir S.A.M, Norshida, I. & Ahmad-Syazni, K. 2020. Origin of invasive fish species, peacock bass Cichla species in Lake Telabak Malaysia revealed by mitochondrial DNA barcoding. Egyptian Journal of Aquatic Biology and Fisheries, 24(3): 311–22. DOI: https://doi.org/10.21608/ejabf.2020.92251

Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870-1874. DOI: https://doi.org/10.1093/molbev/msw054

Lane, M. A., Barsanti, M. C., Santos, C. A., Yeung, M., Lubner, S. J., & Weil, G. J. 2009. Human paragonimiasis in North America following ingestion of raw crayfish. Clinical Infectious Disease, 49: 55-61. DOI: https://doi.org/10.1086/605534

Max-Aguilar, A., Villarreal, H., Leyva-Valencia, I., Valencia-Valdez, R., Naranjo-Páramo, J., Vargas-Mendieta, M. & Cruz-Hernández, P. 2021. Genetic diversity of divergent redclaw crayfish Cherax quadricarinatus (Von Martens, 1868) populations evaluated to initiate a breeding program in Mexico. Latin American Journal of Aquatic Research, 49(2): 272-279. DOI: https://doi.org/10.3856/vol49-issue2-fulltext-2630

Naqiuddin, A.S., Rahim, K.A.A., Long, S.M. & Nicholas, F.F.F. 2016. The spread of the Australian redclaw crayfish (Cherax quadricarinatus von Martens, 1868) in Malaysia. Journal of Sustainability Science and Management, 11(2): 31–38.

Nasir, S.A.M., Khaleel, A.G., Badaluddin, N.A., Kok, S., Ismail, N., Shahreza, M. S. & Ahmad-Syazni, K. 2020. Development of species-specific primer sets for Australian redclaw crayfish (Cherax quadricarinatus) detection from water environmental DNA (eDNA). Bioscience Research, 17(SI-1): 90-99.

Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. 512 pp. DOI: https://doi.org/10.7312/nei-92038

Norshida, I., Nasir, M.A.N., Khaleel, A.G., Sallehuddin, A., Idrus, S., Istiqomah, I. & Kamarudin, A. 2021. First wild record of Australian redclaw crayfish Cherax quadricarinatus (von Martens, 1868) in the east coast of Peninsular Malaysia. BioInvasions Records, 10(2): 360-368. DOI: https://doi.org/10.3391/bir.2021.10.2.14

Patoka, J., Wardiatno, Y., Yonvitner, Kurikova, P., Petrtyl, M. & Kalous, L. 2016. Cherax quadricarinatus (von Martens) has invaded Indonesian territory west of the Wallace Line: Evidence from Java. Knowledge & Management of Aquatic Ecosystems, 417: 39. DOI: https://doi.org/10.1051/kmae/2016026

Romero, X., & Jimenez, R. 2002. Histopathological Survey of Diseases and Pathogens Present in Redclaw Crayfish, Cherax quadricarinatus (von Martens), Cultured in Ecuador. J. Fish Dis., 25(11): 653-667. DOI: https://doi.org/10.1046/j.1365-2761.2002.00411.x

Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos- Onsins, S.E. & Sanchez-Gracia, A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12): 3299-3302. DOI: https://doi.org/10.1093/molbev/msx248

Sallehuddin, A.S., Ahmad-Syazni, K. & Norshida, I. 2021. Review on the global distribution of wild population of Australian Redclaw Crayfish, Cherax quadricarinatus (von Martens, 1868). Bioscience Research, 18(SI-2): 194-207.

Tajima, F. 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics, 105(2): 437-460. DOI: https://doi.org/10.1093/genetics/105.2.437

Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3): 585-595. DOI: https://doi.org/10.1093/genetics/123.3.585

Taryono, Mashar A., & Aryasa S. 2021. Management policy of invasive species red claw crayfish (Cherax quadricarinatus) at Lido Lake, Bogor Regency. Journal of International Symposium on Aquatic Sciences and Resources Management (IOP Conference Series in Earth & Environmental Science, 744, 012090. DOI: https://doi.org/10.1088/1755-1315/744/1/012090

Zhao, Y., Zhu, X., Jiang, Y., Li, Z., Li, X., Xu, W., Wei, H., Li, Y. & Li, X. 2021. Genetic diversity and variation of seven Chinese grass shrimp (Palaemonetes sinensis) populations based on the mitochondrial COI gene. BMC Ecology and Evolution, 21, 167. DOI: https://doi.org/10.1186/s12862-021-01893-8

Published

31-03-2023

How to Cite

Mohd Dali, M. Z., Mohd Nasir, M. S. A., Khaleel, A. G., Madiran, N. A., Ismail, N., & Kamarudin, A. S. (2023). Genetic Variability of Wild Populations of Invasive Redclaw Crayfish (Cherax quadricarinatus) von Martens 1868 Across Peninsular Malaysia. Malaysian Applied Biology, 52(1), 35–42. https://doi.org/10.55230/mabjournal.v52i1.2427

Issue

Section

Research Articles