EPIGENETIC MODIFIERS AND MINERALS AS TOOLS TO DIVERSIFY SECONDARY METABOLITE PRODUCTION IN FUNGI

https://doi.org/10.55230/mabjournal.v51i4.20

Authors

  • SITI HAJAR SADIRAN Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA (Selangor Branch), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. https://orcid.org/0000-0001-6699-4464
  • FATMAWATI LAMBUK Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA (Selangor Branch), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA (Selangor Branch), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia.
  • SITI NUR SARAH ZUBIR Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA (Selangor Branch), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA (Selangor Branch), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia.
  • RASHA SAAD SULIMAN Department of Pharmacy, Fatima College of Health Scienes, P.O. Box 42162, Al Maqam, Al Ain, United Arab Emirates
  • JEAN-FRÉDÉRIC FAIZAL WEBER Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA (Selangor Branch), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Laboratoire de Pharmacognosie, UFR Sciences Pharmaceutiques, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux cedex, France

Keywords:

epigenetic modifier, elicitors, secondary metabolites, soil fungi

Abstract

Secondary metabolite production of fungi can be modified by different approaches, including epigenetic modifiers, culture-dependent methods, and genomic-based methods. In this study, secondary metabolite production was explored in the presence of epigenetic modifiers and minerals using a microscale fermentation approach. Thirteen fungi originally isolated from mushrooms and soils were grown in 96-well microtiter plates (MTPs) using 70% of potato dextrose broth (PDB) with the addition of epigenetic modifiers and minerals in different combinations and concentrations. All cultures were fermented at 10 °C or 28 °C for 2, 3, or 5 weeks and extracted by solid phase extraction. The resulting extracts were subjected to high-performance liquid chromatography (HPLC) and the chromatograms were analyzed on a qualitative and quantitative basis. In addition, major secondary metabolites from four fungi were identified as penicillic acid, patulin, pseurotin A, and javanicin. Epigenetic modifiers and minerals induce significant changes in the profile of the secondary metabolites. Their usage combined with microscale fermentation provides a cost-efficient tool for exploring fungal secondary metabolism.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Arnstein, H.R.V., Cook, A.H. & Lacey, M.S. 1946. An antibacterial pigment from Fusarium javanicum. Nature, 157(3985): 333-334. DOI: https://doi.org/10.1038/157333b0

Asai, T., Chung, Y.M., Sakurai, H., Ozeki, T., Chang, F., Yamashita, K. & Oshima, Y. 2012. Tenuipyrone, a novel skeletal polyketide from entomopathogenic fungus, Isaria tenuipes, cultivated in the presence of epigenetic modifier. Organic Letters, 14(2): 513-515. DOI: https://doi.org/10.1021/ol203097b

Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E, Quail, M.A., Kieser, H., Harper, D., Bateman, A. Brown, S., Chandra, G., Chen, C.W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.-H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O’Neil, S., Rabbinowitsch, E., Rajandream, M.-A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Taylor, K. Warren, T., Wietzorrek, A., Woodward, J., Barrel, B.G., Parkhill, J. & Hopwood, D.A. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature, 417(6885): 141-147. DOI: https://doi.org/10.1038/417141a

Bloch, P., Tamm, C., Bollinger, P., Petcher, T. J. & Weber, H.P. 1976. Pseurotin, a new metabolite of Pseudeurotium ovalis STOLK having an unusual hetero‐spirocyclic system. (Preliminary Communication). Helvetica chimica acta, 59(1): 133-137. DOI: https://doi.org/10.1002/hlca.19760590114

Bode, H.B., Bethe, B., Höfs, R. & Zeeck, A. 2002. Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem, 3(7): 619–627. DOI: https://doi.org/10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9

Brosch, G., Loidl, P. & Graessle, S. 2008. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS microbiology reviews, 32(3): 409-439. DOI: https://doi.org/10.1111/j.1574-6976.2007.00100.x

Chiang, Y.M., Szewczyk, E., Nayak, T., Davidson, A.D., Sanchez, J.F., Lo, H.C., Ho, W.Y., Simityan, H., Kuo, E., Praseuth, A., Watanabe, K., Oakley, B.R. & Wang, C.C. 2008. Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chemistry & biology, 15(6): 527–532. DOI: https://doi.org/10.1016/j.chembiol.2008.05.010

Chiang, Y.M., Szewczyk, E., Davidson, A.D., Keller, N., Oakley, B.R. & Wang, C.C. 2009. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. Journal of the American Chemical Society, 131(8): 2965–2970. DOI: https://doi.org/10.1021/ja8088185

Cole, P.A. 2008. Chemical probes for histone-modifying enzymes. Nature Chemical Biology, 4(10): 590-597. DOI: https://doi.org/10.1038/nchembio.111

Frisvad, J.C. 2018. A critical review of producers of small lactone mycotoxins: Patulin, penicillic acid and moniliformin. World Mycotoxin Journal, 11(1): 73-100. DOI: https://doi.org/10.3920/WMJ2017.2294

Gross, H. 2009. Genomic mining - a concept for the discovery of new bioactive natural products. Current Opinion in Drug Discovery & Development, 12(2): 207–219. DOI: https://doi.org/10.1055/s-0030-1264203

Haferburg, G., Groth, I., Möllmann, U., Kothe, E. & Sattler, I. 2009. Arousing sleeping genes: shifts in secondary metabolism of metal tolerant actinobacteria under conditions of heavy metal stress. Biometals, 22(2): 225-235. DOI: https://doi.org/10.1007/s10534-008-9157-4

Hertweck, C. 2009. Hidden biosynthetic treasures brought to light. Nature Chemical Biology, 5(7): 450–452. DOI: https://doi.org/10.1038/nchembio0709-450

Keller, N.P., Turner, G. & Bennett, J.W. 2005. Fungal secondary metabolism - from biochemistry to genomics. Nature Reviews Microbiology, 3(12): 937-94. DOI: https://doi.org/10.1038/nrmicro1286

Li, C.Y., Chung, Y. M., Wu, Y.C., Hunyadi, A., Wang, C.C. & Chang, F.R. 2020. Natural products development under epigenetic modulation in fungi. Phytochemistry Reviews, 19(6): 1323-1340. DOI: https://doi.org/10.1007/s11101-020-09684-7

Moake, M.M., Padilla-Zakour, O.I. & Worobo, R.W. 2005. Comprehensive review of patulin control methods in foods. Comprehensive Reviews in Food Science and Food Safety 4(1): 8-21. DOI: https://doi.org/10.1111/j.1541-4337.2005.tb00068.x

Newman, D.J. 2019. From natural products to drugs. Physical Sciences Reviews, 4(4): 20180111. DOI: https://doi.org/10.1515/psr-2018-0111

Ochi, K. & Hosaka, T. 2013. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Applied Microbiology and Biotechnology, 97(1): 87–98. DOI: https://doi.org/10.1007/s00253-012-4551-9

Pan, R., Bai, X., Chen, J., Zhang, H. & Wang, H. 2019. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: A literature review. Frontiers in Microbiology, 10: 294. DOI: https://doi.org/10.3389/fmicb.2019.00294

Radman, R., Saez, T., Bucke, C. & Keshavarz, T. 2003. Elicitation of plants and microbial cell systems. Biotechnology and Applied Biochemistry, 37(1): 91–102. DOI: https://doi.org/10.1042/BA20020118

Rutledge, P.J., & Challis, G.L. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology, 13(8): 509-523. DOI: https://doi.org/10.1038/nrmicro3496

Scherlach, K. & Hertweck, C. 2009. Triggering cryptic natural product biosynthesis in microorganisms. Organic & Biomolecular Chemistry, 7(9): 1753–1760. DOI: https://doi.org/10.1039/b821578b

Shaaban, M., El-Metwally, M.M. & Nasr, H. 2014. A new diketopiperazine alkaloid from Aspergillus oryzae. Natural Product Research, 28(2): 86-94. DOI: https://doi.org/10.1080/14786419.2013.841687

Shi, T., Shao, C.L., Liu, Y., Zhao, D.L., Cao, F., Fu, X.M., Yu, J.Y., Wu, J.S., Zhang, Z.K. & Wang, C.Y. 2020. Terpenoids from the coral-derived fungus Trichoderma harzianum (XS-20090075) induced by chemical epigenetic manipulation. Frontiers in Microbiology, 11: 572. DOI: https://doi.org/10.3389/fmicb.2020.00572

Toghueo, R.M.K., Sahal, D. & Boyom, F.F. 2020. Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers. Phytochemistry, 174: 112338. DOI: https://doi.org/10.1016/j.phytochem.2020.112338

Williams, R.B, Henrikson, J.C, Hoover, A.R, Lee, A.E. & Cichewicz, R.H. 2008. Epigenetic remodeling of the fungal secondary metabolome. Organic & Biomolecular Chemistry, 6(11): 1895-1897. DOI: https://doi.org/10.1039/b804701d

Yu, M., Li, Y., Banakar, S.P., Liu, L., Shao, C., Li, Z. & Wang, C. 2019. New metabolites from the co-culture of marine-derived actinomycete Streptomyces rochei MB037 and fungus Rhinocladiella similis 35. Frontiers in Microbiology, 10: 915. DOI: https://doi.org/10.3389/fmicb.2019.00915

Published

31-10-2022

How to Cite

SADIRAN, S. H., LAMBUK, F., ZUBIR, S. N. S. ., SULIMAN, R. S. ., & WEBER, J.-F. F. . (2022). EPIGENETIC MODIFIERS AND MINERALS AS TOOLS TO DIVERSIFY SECONDARY METABOLITE PRODUCTION IN FUNGI. Malaysian Applied Biology, 51(4), 127–136. https://doi.org/10.55230/mabjournal.v51i4.20