IN-VITRO MELANOGENESIS, CYTOTOXICITY AND ANTIOXIDANT ACTIVITIES OF Peltophorum pterocarpum LEAF EXTRACTS
Keywords:
B16-F1 melanoma cells, melanin, Peltophorum pterocarpum, total flavonoids, total phenolicsAbstract
Melanin is a protective pigment against cellular damage and skin cancer. Peltophorum pterocarpum has been used for centuries to treat skin diseases like eczema and psoriasis. However, whether P. pterocarpum leaf extract can affect melanin synthesis with the advantage of antioxidant defense against ultraviolet (UV) radiation remains to be investigated. We aimed to examine the melanogenesis, cytotoxicity, and antioxidant activities of P. pterocarpum leaf extracts. A two-dimensional (2D) cell culture model was employed to demonstrate the effect of P. pterocarpum extracts on melanin synthesis. The cell viability of B16-F1 melanoma cells was measured by Neutral Red Uptake (NRU) assay. Antioxidant activity was accessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA) assays. The ethanol extract of P. pterocarpum dose-dependently increased the melanin content and displayed cytotoxicity to B16-F1 melanoma cells at the highest concentration. In contrast, the equal amounts of the aqueous extract significantly inhibited melanin synthesis and did not show any cytotoxic effects on B16-F1 melanoma cells. The P. pterocarpum ethanol extract had a significantly higher total phenolic and flavonoid content than the aqueous extract and was more effective at scavenging DPPH free radicals and intracellular ROS induced by UVB, with IC50 of 519.24 ± 122.57 vs 1798.45 ± 143.09 µg/mL and 878.00 ± 23.50 vs 1379.00 ± 21.81 µg/mL, respectively. These findings suggest that the pro-melanogenic and anti-melanogenic activities of P. pterocarpum extract with antioxidant capacity against UVB-induced cellular damage are affected by the total phenolic and flavonoid contents.
Downloads
Metrics
References
Arung, E.T., Furuta, S., Ishikawa, H., Kusuma, I.W., Shimizu, K. & Kondo, R. 2011. Anti-melanogenesis properties of quercetin and its derivative-rich extract from Allium cepa. Food Chemistry, 124(3): 1024-1028. DOI: https://doi.org/10.1016/j.foodchem.2010.07.067
Bellei, B. & Picardo, M. 2020. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Research Reviews, 57: 100981. DOI: https://doi.org/10.1016/j.arr.2019.100981
Bourhim, T., Villareal, M.O., Couderc, F., Hafidi, A., Isoda, H. & Gadhi, C. 2021. Melanogenesis promoting effect, antioxidant activity, and uplc-esi-hrms characterization of phenolic compounds of argan leaves extract. Molecules, 26(2): 371. DOI: https://doi.org/10.3390/molecules26020371
Chávez-González, M,L,, Sepúlveda, L., Verma, D.K., Luna-García, H.A., Rodríguez-Durán, L.V., Ilina, A. & Aguilar C.N. 2020. Conventional and emerging extraction processes of flavonoids. Processes, 8(4): 434. DOI: https://doi.org/10.3390/pr8040434
Choo, W.S. & Yong, W. 2011. Antioxidant properties of two species of Hylocereus fruits. Advances in Applied Science Research, 2(3): 418–425.
Dabas, G., Vinay, K., Parsad, D., Kumar, A. & Kumaran, M.S. 2020. Psychological disturbances in patients with pigmentary disorders: A cross-sectional study. Journal of the European Academy of Dermatology and Venereology, 34(2): 392-399. DOI: https://doi.org/10.1111/jdv.15987
Fujii, T. & Saito, M. 2009. Inhibitory effect of quercetin isolated from rose hip (Rosa canina L.) against melanogenesis by mouse melanoma cells. Bioscience, Biotechnology, and Biochemistry, 73(9): 1989-1993. DOI: https://doi.org/10.1271/bbb.90181
Hong, S.H., Sim, M.J. & Kim, Y.C. 2016. Melanogenesis-promoting effects of Rhynchosia nulubilis and Rhynchosia volubilis ethanol extracts in melan-a cells. Toxicological Research, 32(2): 141–147. DOI: https://doi.org/10.5487/TR.2016.32.2.141
Ilieva, Y., Dimitrova, L., Zaharieva, M.M., Kaleva, M., Alov, P., Tsakovska, I., Pencheva, T., Tibi, I.P., Najdenski, H. & Pajeva, I. 2021. Cytotoxicity and microbicidal activity of commonly used organic solvents: A comparative study and application to a standardized extract from Vaccinium macrocarpon. Toxics, 9(5): 92. DOI: https://doi.org/10.3390/toxics9050092
Jenkins, N.C. & Grossman, D. 2013. Role of melanin in melanocyte dysregulation of reactive oxygen species. BioMed Research International, 2013. DOI: https://doi.org/10.1155/2013/908797
Jha, R., Ramani, P.T., Patel, D., Desai, S., Ramani, T. & Meshram, D. 2016. Phytochemical analysis and in vitro urolithiatic activity of Peltophorum pterocarpum leaves (DC) Baker. Journal of Medicinal Plants, 4(3): 18-22.
Junlatat, J., Fangkrathok, N. & Sripanidkulchai, B. 2018. Antioxidative and melanin production inhibitory effects of Syzygium cumini extracts. Songklanakarin Journal of Science and Technology, 40(5): 1136-1143.
Kim, H.J., Kim, J.S., Woo, J.T., Lee, I.S. & Cha, B.Y. 2015. Hyperpigmentation mechanism of methyl 3,5-di-caffeoylquinate through activation of p38 and mitf induction of tyrosinase. Acta Biochimica et Biophysica Sinica, 47(7): 548–556. DOI: https://doi.org/10.1093/abbs/gmv040
Kim, S.R., Cuong To, D.C., Nguyen, P.H., Nguyen, Y.N., Cho, B.J. & Tran, M.H. 2020. Antioxidant and cell proliferation properties of the vietnamese traditional medicinal plant Peltophorum pterocarpum. Molecules, 25(20): 4800. DOI: https://doi.org/10.3390/molecules25204800
Li, Y.C., Kuo, P.C., Yang, M.L., Chen, T.Y., Hwang, T.L., Chiang, C.C., Thang, T.D., Tuan, N.N. & Tzen, J. 2019. Chemical constituents of the leaves of Peltophorum pterocarpum and their bioactivity. Molecules, 24(2): 240. DOI: https://doi.org/10.3390/molecules24020240
Ling, L.T., Yap, S.A., Radhakrishnan, A.K., Subramaniam, T., Cheng, H.M. & Palanisamy, U.D. 2009. Standardised Mangifera indica extract is an ideal antioxidant. Food Chemistry, 113(4): 1154–1159. DOI: https://doi.org/10.1016/j.foodchem.2008.09.004
Loser, K., Brzoska, T., Oji, V., Auriemma, M., Voskort, M., Kupas, V., Klenner, L., Mensing, C., Hauschild, A., Beissert, S. & Luger, T. A. 2010. The neuropeptide alpha-melanocyte-stimulating hormone is critically involved in the development of cytotoxic CD8+ T cells in mice and humans. PloS One, 5(2): 8958. DOI: https://doi.org/10.1371/journal.pone.0008958
Manaharan, T., Teng, L.L., Appleton, D., Ming, C.H., Masilamani, T. & Palanisamy, U.D. 2011. Antioxidant and antiglycemic potential of Peltophorum pterocarpum plant parts. Food Chemistry, 129(4): 1355–1361. DOI: https://doi.org/10.1016/j.foodchem.2011.05.041
Nagata, H., Takekoshi, S., Takeyama, R., Homma, T. & Osamura, R.Y. Quercetin enhances melanogenesis by increasing the activity and synthesis of tyrosinase in human melanoma cells and in normal human melanocytes. Pigment Cell Research, 17(1): 66-73. DOI: https://doi.org/10.1046/j.1600-0749.2003.00113.x
Nawaz, H., Shad, M.A., Rehman N., Andaleeb H. & Ullah, N. 2020. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56: 17129. DOI: https://doi.org/10.1590/s2175-97902019000417129
Netcharoensirisuk, P., Abrahamian, C., Tang, R., Chen, C.C., Rosato, A.S., Beyers, W. Chao, Y.K., Filippini, A., Di Pietro, S., Bartel, K., Biel, M., Vollmar, A.M., Umehara, K., De-Eknamkul, W., & Grimm, C. 2021. Flavonoids increase melanin production and reduce proliferation, migration and invasion of melanoma cells by blocking endolysosomal/melanosomal TPC2. Sci Rep, 11: 8515. DOI: https://doi.org/10.1038/s41598-021-88196-6
Nitoda, T., Fan, M.D. & Kubo, I. 2007. Anisaldehyde, a melanogenesis potentiator. Zeitschrift fur Naturforschung. C, Journal of Biosciences, 62(1-2): 143–149. https://doi.org/10.1515/znc-2007-1-224 DOI: https://doi.org/10.1515/znc-2007-1-224
Nogueira, C.R., da Silva, J.D.A., do Vieira, M.C., Cardoso, C.A.L., de Carvalho, R.A., Amaral, C.S.T. & Amaral, A.C. 2021. Cytotoxicity and the bioconversion strategy of Aristolochia spp. Arquivos Do Instituto Biológico, 88: 1–6. DOI: https://doi.org/10.1590/1808-1657000622019
Oh, Y., Lim, H.W., Park, K.H., Huang, Y.H., Yoon, J.Y., Kim, K. & Lim, C. J. 2017. Ginsenoside Rc protects against UVB-induced photooxidative damage in epidermal keratinocytes. Molecular Medicine Reports, 16(3): 2907–2914. DOI: https://doi.org/10.3892/mmr.2017.6943
Ohguchi, R., Kato, H., Furuhashi, T., Nakamura, M., Nishida, E., Watanabe, S., Shintani, Y. & Morita. 2015. A Risk factors and treatment responses in patients with vitiligo in Japan - A retrospective large-scale study. Kaohsiung Journal of Medical Sciences, 31(5): 260–264. DOI: https://doi.org/10.1016/j.kjms.2015.02.003
Palareti, G., Legnani, C., Cosmi, B., Antonucci, E., Erba, N., Poli, D., Testa, S. & Tosetto, A. 2016. Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: analysis of results obtained in the DULCIS study. International Journal of Laboratory Hematology, 38(1): 42-49. DOI: https://doi.org/10.1111/ijlh.12426
Passeron, T. 2017. Medical and maintenance treatments for vitiligo. Dermatologic Clinics, 35(2): 163–170. DOI: https://doi.org/10.1016/j.det.2016.11.007
Pawelek, J.M. & Murray, M. 1986. Increase in melanin formation and promotion of cytotoxicity in cultured melanoma cells caused by phosphorylated isomers of L-dopa. Cancer Research, 46(2): 493–497
Priyanthi, C. & Sivakanesan. R. 2021. The total antioxidant capacity and the total phenolic content of rice using water as a solvent. International Journal of Food Science, 2021. DOI: https://doi.org/10.1155/2021/5268584
Pygmalion, M.J., Ruiz, L., Popovic, E., Gizard, J., Portes, P., Marat, X. & Galey, J.B. 2010. Skin cell protection against UVA by Sideroxyl, a new antioxidant complementary to sunscreens. Free Radical Biology and Medicine, 49(11): 1629–1637. DOI: https://doi.org/10.1016/j.freeradbiomed.2010.08.009
Rodríguez De Luna, S.L., Ramírez-Garza, R.E. & Serna Saldívar, S. O. 2020. Environmentally friendly methods for flavonoid extraction from plant material: impact of their operating conditions on yield and antioxidant properties. The Scientific World Journal, 2020: 6792069. DOI: https://doi.org/10.1155/2020/6792069
Rostagno, M., Manchón, N., Guillamón, E., García-Lafuente, A., Villares, A. & Martínez, J. A. 2010. Chapter 17: Methods and techniques for the analysis of isoflavones in foods. In: Chromatography: Types, Techniques and Methods, Toma J. Quintin (Ed.). Nova Science Publishers, Inc. pp 157–198.
Sukumaran, S., Kiruba, S., Mahesh, M., Nisha, S.R., Miller, P.Z., Ben, C.P. & Jeeva, S. 2011. Phytochemical constituents and antibacterial efficacy of the flowers of Peltophorum pterocarpum (DC.) Baker ex Heyne. Asian Pacific Journal of Tropical Medicine, 4(9): 735–738. DOI: https://doi.org/10.1016/S1995-7645(11)60183-1
Tuerxuntayi, A., Liu, Y.Q., Tulake, A., Kabas, M., Eblimit, A. & Aisa, H.A. 2014. Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells. BMC Complementary and Alternative Medicine, 2014: 14. DOI: https://doi.org/10.1186/1472-6882-14-166
Umar, S.A. & Tasduq, S.A. 2022. Ozone layer depletion and emerging public health concerns - An update on epidemiological perspective of the ambivalent effects of ultraviolet radiation exposure. Frontiers in Oncology, 12: 866733. DOI: https://doi.org/10.3389/fonc.2022.866733
Üstün Alkan, F., Anlas, C., Bakırel, T., & Bilge Sari, A. 2014. Antioxidant and proliferative effects of aqueous and ethanolic extracts of Symphytum officinale on 3T3 Swiss albino mouse fibroblast cell line. Asian Journal of Plant Science and Research, 4(4):62-68.
Vajpai, A., Ashokkumar, M., Shirke, V. & Gaurav G.B. 2021. Screening of flowers of Peltophorum pterocarpum for different biological activities. International Journal of Recent Scientific Research, 12(4): 41603-41606.
Visuvanathan, V.V., Tang, M.M., Tan, L.L. & Johar, A. 2018. The utilization of phototherapy in the department of dermatology, hospital Kuala Lumpur: A 5-year audit. Medical Journal of Malaysia, 73(3): 125–130.
Wakeel, A., Jan, S.A., Ullah, I., Shinwari, Z.K. & Xu, M. 2019. Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. PeerJ, 7: 7857. DOI: https://doi.org/10.7717/peerj.7857
Zhishen, J., Mengcheng, T. & Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555–559. DOI: https://doi.org/10.1016/S0308-8146(98)00102-2
Zubair, R., Lyons, A.B., Vellaichamy, G., Peacock, A. & Hamzavi, I. What’s new in pigmentary disorders. Dermatologic Clinics, 37(2): 175–181. DOI: https://doi.org/10.1016/j.det.2018.12.008
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission