BIOINFORMATIC ANALYSIS AND PURIFICATION OF GLUTATHIONE TRANSFERASE (GST) from Pseudomonas sp. UW4

https://doi.org/10.55230/mabjournal.v51i4.27

Authors

  • CHRISTINA WEN HUI KONG Toxicology and Protein Analysis Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • IRENE KIT PING TAN Toxicology and Protein Analysis Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • ZAZALI ALIAS Toxicology and Protein Analysis Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

Keywords:

affinity chromatography, glutathione transferases, Pseudomonas sp. UW4

Abstract

The study aimed at identifying and purifying cytosolic glutathione transferase isoforms expressed in Pseudomonas sp. UW4. Search at UniProt (https://www.uniprot.org/uniprot/), has indicated that there were 20 genes encoding putative glutathione transferases for the microorganism. The molecular weights of the isoforms ranged from 17.6 to 34.06 kDa.  SDS-polyacrylamide gel electrophoresis revealed that the GST purified using Sulfobromophthalein-glutathione (BSP) affinity column, resolved into a single band with a low molecular weight (MW) of 16 kDa with the pI value of 6.0. Purified GST was reactive towards ethacrynic acid, 1-chloro-2,4-dinitrobenzene, cumene hydroxide, and hydrogen peroxide, but no detectable activity with Trans-2-octenal, hepta-2,4-dienal and Trans-4-phenyl-3-butene-2-one. This has proven that putative GST possessed peroxidase activity and proposed to be similar to PputUW4_00801 (putative glutathione S-transferase) of Pseudomonas sp. UW4 according to its estimated molecular weight and the pI values obtained experimentally. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Allocati, N., Casalone, E., Masulli, M., Ceccarelli, I., Carletti, E., Parker, M. W. & Di Ilio, C. 1999. Functional analysis of the evolutionarily conserved proline 53 residue in Proteus mirabilis glutathione transferase B1-1. FEBS Letters, 445: 347–350. DOI: https://doi.org/10.1016/S0014-5793(99)00147-7

Allocati, N., Federici, L., Masulli, M. & Di Ilio, C. 2009. Glutathione transferases in bacteria, FEBS Journal, 276: 58–75. DOI: https://doi.org/10.1111/j.1742-4658.2008.06743.x

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72:248-54. DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Bresell, A., Weinder R., Lundqvist, G., Raza, W., Shimoji, M., Sun, T-H., Balk, L., Wiklund, R., Erikson, J., Jansson, C., Persson, B., Jakobsson, P-J. & Morgentenson, R. 2005. Bioinformatic and enzymativ characterization of the MAPEG superfamily. FEBS Journal, 272: 1688-1703. DOI: https://doi.org/10.1111/j.1742-4658.2005.04596.x

Di Ilio, C., Aceto, D.A., Piccolomini, R., Allocati, N., Faraone, A., Cellini, L., Ravagnani, G. & Federici, G. 2001. Purification and characterization of three forms of glutathione transferase from Proteus mirabilia. Biochemical Journal, 360:1–16.

Duan, J., Jiang, W., Cheng, Z.Y., Heikila, J.J. & Glick, B.R. 2013. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS ONE, 8:1-19. DOI: https://doi.org/10.1371/journal.pone.0058640

Kelly, L.A., Mezulis, S., Yates, C.M., Wass M.N. & Sternberg, S.J.E. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10: 845-858. DOI: https://doi.org/10.1038/nprot.2015.053

Mortz, E., Krogh, T.N., Vorum, H. & Görg, A. 2001. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics, 1:1359–1363. DOI: https://doi.org/10.1002/1615-9861(200111)1:11<1359::AID-PROT1359>3.0.CO;2-Q

Nebert, D.W. & Vasiliou, V. 2004. Analysis of the glutathione S-transferase (GST) gene family. Human Genomics, 1: 460–464. DOI: https://doi.org/10.1186/1479-7364-1-6-460

Oakley, A.J. 2011. Glutathione transferases: a structural perspective. Drug Metabolism Reviews, 43(2): 138-151. DOI: https://doi.org/10.3109/03602532.2011.558093

Oakley, A.J., Harnnoi, T., Udomsimpraset, R., Jirajaroenrat, K., Ketterman, A.J. & Wilce, M.C.J. 2001. The crystal structures of glutathione S-transferases isozymes 1–3 and 1–4 from Anopheles dirus species B. Protein Science : A Publication of the Protein Society, 10(11): 2176–2185. DOI: https://doi.org/10.1110/ps.ps.21201

Pakorn, W. & Albert, J.K. 2005. An electron-sharing network involved in the catalytic mechanisms is functionally conserved in different glutathione transferase classes. The Journal of Biological Chemistry, 280: 31776-31782. DOI: https://doi.org/10.1074/jbc.M502612200

Pandey, T., Singh, S.K., Chhetri, G., Tripathi, T. & Singh, A. K. 2015. Characterization of highly pH stable chi-class glutathione S-transferase from Synechocystis PCC 6803. PLoS ONE, 10(5): e0126811. DOI: https://doi.org/10.1371/journal.pone.0126811

Philip, J.S. & John, D.H. 2001. Glutathione S-transferases. Enzyme Systems that Metabolise Drugs and Other Xenobiotics. Edited by Costas Ioannides, Copyright John Wiley & Sons Ltd. University of Dundee, UK.

Sheehan, D., Meade, G., Foley, V.M. & Dowd, C.A. 2001. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 255: 971-975. DOI: https://doi.org/10.1042/bj3600001

Shehu, D., Abdullahi, N. & Alias Z. 2019. Cytosolic Glutathione S-transferase in Bacteria: A Review. Polish Journal of Environmental Studies, 28: 1-14. DOI: https://doi.org/10.15244/pjoes/85200

Shi, Y.L., Wang, Q.F., Hou, Y.H., Hong, Y.Y., Xiao, H., Yi, J.L., Qu, J.J. & Lu, Y. 2014. Molecular cloning, expression and enzymatic characterization of glutathione S-transferase from Antarctic sea-ice bacteria Pseudoaltermonoas sp. ANT506. Microbiological Research, 160: 179-184. DOI: https://doi.org/10.1016/j.micres.2013.06.012

Skopelitou, K., Dhavala, P., Papageorgiou, A.C. & Labrou, N.E. 2012. A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily. PLoS ONE, 7: e34263. DOI: https://doi.org/10.1371/journal.pone.0034263

Vuilleumier, S. 1997. Bacterial glutathione S-transferases: what are they good for. Journal of Bacteriology, 179: 1431–1441. DOI: https://doi.org/10.1128/jb.179.5.1431-1441.1997

Wendel, A. 1981. Glutathione peroxidase. Method Enzymology, 77: 325–333. DOI: https://doi.org/10.1016/S0076-6879(81)77046-0

Yang, H.L., Zeng, Q.Y., Nie, L.J., Zhu, S.G. & Zhou, X.W. 2003. Purification and characterization of a novel glutathione S-transferase from Atactodea striata. Biochemical and Biophysical Research Communications, 307: 626–631. DOI: https://doi.org/10.1016/S0006-291X(03)01221-X

Zablotiwicz, R.M., Hoagland, R.E., Locke, M.A. & Hickey, W.J. 1995. Glutathione-S-Transferase activity and metabolism of glutathione conjugates by rhizosphere bacteria. Applied and Environmental Microbiology, 61: 1054–1060. DOI: https://doi.org/10.1128/aem.61.3.1054-1060.1995

Ziglari, T. & Allameh, A. 2013. The significance of glutathione conjugation in aflatoxin metabolism, aflatoxins - recent advances and future prospects. In: Aflatoxin. R-A. Mehdi (Ed.). InTechOpen. pp. 267-286. DOI: https://doi.org/10.5772/52096

Published

31-10-2022

How to Cite

KONG, C. . W. H., TAN, I. K. P., & ALIAS, Z. . (2022). BIOINFORMATIC ANALYSIS AND PURIFICATION OF GLUTATHIONE TRANSFERASE (GST) from Pseudomonas sp. UW4. Malaysian Applied Biology, 51(4), 177–184. https://doi.org/10.55230/mabjournal.v51i4.27