• AHMAD TAMIM GHAFARI Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia; Department of Pharmacology, Faculty of Pharmacy, Kabul University, Kabul 1006, Afghanistan
  • AISYAH HASYILA JAHIDIN Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia
  • YUSLINA ZAKARIA Faculty of Pharmacy, Universiti Teknologi MARA, Malaysia
  • MIZATON HAZIZUL HASAN Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia


Anti-inflammatory, antioxidant, correlation, lipopolysaccharide, reactive oxygen species, Vitex trifolia


Inflammation is the human body’s defensive response against harmful events and a hallmark of many chronic conditions. Commonly, pharmacological approaches to treat inflammation include the use of non-steroidal anti-inflammatory drugs (NSAIDs) that could potentially possess life-threatening side effects after prolonged use. Hence there is a need for safer alternatives with fewer possible side effects. Vitex trifolia is a shrub from the family Verbenaceae, which possesses potential anti-inflammatory effects and is traditionally used to treat inflammation-related diseases in several Asian countries. This study aimed to explore the antioxidant and anti-inflammatory effect of V. trifolia leaves hydroalcoholic extract (VT) against murine macrophages (RAW 264.7 cells) induced with hydrogen peroxide (H2O2) and lipopolysaccharide (LPS). The reactive oxygen species (ROS) production was evaluated in the H2O2-induced macrophages. On the other hand, the interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX) levels were quantified in the LPS-induced macrophages. VT (25 & 50 µg/mL) showed protective effects and significantly (p<0.05) increased the cell viability and reduced the ROS production compared to that of macrophages treated with 300 µM H2O2 alone. Additionally, VT (50 & 100 µg/mL) significantly (p<0.05) reduced LPS-induced TNF-α and IL-6 levels and COX activity compared to the macrophages treated with LPS (1 µg/mL), alone. However, VT and diclofenac had no inhibitory effect on IL-1β induced by LPS. Moreover, a significant positive correlation was found between VT antioxidant and anti-inflammatory effects. Concisely, these outcomes showed the potential antioxidant and anti-inflammatory effect of VT with a positive correlation between these protective actions. Therefore, our results suggest that VT may serve as a source of nutraceutical compounds with impending antioxidant and anti-inflammatory activities. However, further molecular investigations on the isolated compounds of the plant and in vivo studies are suggested for future work.


Download data is not yet available.


Metrics Loading ...


Abd Aziz, S.M., Low, C.N., Chai, L.C., Abd Razak, S.S.N., Selamat, J., Son, R., Sarker, M.Z.I. & Khatib, A. 2011. Screening of selected Malaysian plants against several food borne pathogen bacteria. International Food Research Journal, 18(3): 1141–1147.

Abdul Hakeem, N.R.S., Md Yusof, N., Jahidin, A.H., Hasan, M.H., Mohsin, H.F. & Abdul Wahab, I. 2016. Vitex Species: Review on Phytochemistry and Pouch Design for Nutritional Benefits. Scientific Research Journal, 13(2): 15. DOI:

Adwas, A., Elsayed, A.S.I., Azab, A.E. & Quwaydir, A. 2019. Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology & Bioengineering, 6(1): 43–47. DOI:

Al-Sheddi, E.S., Farshori, N.N., Al-Oqail, M.M., Musarrat, J., Al-Khedhairy, A.A. & Siddiqui, M.A. 2016) Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). Pharmaceutical Biology, 54(2): 314–321. DOI:

Anandan, R., Jayakar, B., Karar, B., Babuji, S., Manavalan, R. & Kumar, R.S. 2009. Effect of ethanol extract of flowers of Vitex trifolia Linn. on CCl4-induced hepatic injury in rats. Pakistan Journal of Pharmaceutical Sciences, 22(4): 391–394.

Ankalikar, A. & Vishwanathswany, A.H. 2017a. Effect of leaves of Vitex trifolia linn on different stages of inflammation. Indian Journal of Pharmaceutical Education and Research, 51(3): 461–471. DOI:

Ankalikar, A. & Vishwanathswany, A.H. 2017. Effect of Vitex trifolia Linn and Solanum nigrum Linn on oxidative. Indian Journal of Health Sciences and Biomedical Research, 10(3): 269–275. DOI:

Aye, M.M., Aung, H.T., Sein, M.M. & Armijos, C. 2019. A review on the phytochemistry, medicinal properties and pharmacological activities of 15 selected Myanmar medicinal plants. Molecules, 24(2): 1–34. DOI:

Bach, L.T., Dung, L.T., Tuan, N.T., Phuong, N.T., Kestemont, P., Quetin-Leclercq, J. & Hue, B.T.B. 2018. Antioxidant activity against hydrogen peroxide-induced cytotoxicity of Euphorbia hirta L. AIP Conference Proceedings, 2049(December): 1–6. DOI:

Bahadori, M.B., Dinparast, L. & Zengin, G. 2016. The Genus Heracleum: A Comprehensive Review on Its Phytochemistry, Pharmacology, and Ethnobotanical Values as a Useful Herb. Comprehensive Reviews in Food Science and Food Safety, 16: 1018-1038. DOI:

Bellezza, I., Giambanco, I., Minelli, A & Donato, R. 2018. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica acta (BBA) - Molecular Cell Research, 1865(5): 721-733 DOI:

Biswas, S. K. 2016. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?. Oxidative Medicine and Cellular Longevity, 2016: 5698931. DOI:

Bjarnason, I., Scarpignato, C., Holmgren, E., Olszewski, M., Rainsford, K.D. & Lanas, A. 2018. Mechanisms of Damage to the Gastrointestinal Tract From Nonsteroidal Anti-Inflammatory Drugs. Gastroenterology, 154(3): 500–514. DOI:

Borish, L.C. & Steinke, J.W. 2003. Cytokines and chemokines. Journal of Allergy and Clinical Immunology, 111(2): 460–475. DOI:

Celenghini, R.M.S., Vilegas, J.H.Y. & Lancas, F.M. 2001. Extraction and quantitative HPLC analysis of coumarin in hydroalcoholic extract of Mikania glomerata Spreng. (“guaco”) Leaves. Journal of the Brazilian Chemical Society, 12(6): 706–9. DOI:

Chan, E.W.C., Wong, S.K. & Chan, H.T. 2018. Casticin from Vitex species: a short review on its anticancer and anti-inflammatory properties. Journal of Integrative Medicine, 16(3): 147–152. DOI:

Chemat, F., Vian, M.A. & Cravotto, G. 2012. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7): 8615–8627. DOI:

Chen, Linlin, Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. & Zhao, L. 2017. Inflammatory Responses and Inflammation-associated Diseases in Organs. Oncotarget, 9(6): 7204–7218. DOI:

Chen, X., Zhong, Z., Xu, Z., Chen, L. & Wang, Y. 2011. No protective effect of curcumin on hydrogen peroxide-induced cytotoxicity in HepG2 cells. Pharmacological Reports, 63(3): 724–732. DOI:

Chen, Y., Zhou, Z. & Min, W. 2018. Mitochondria, oxidative stress and innate immunity. Frontiers in Physiology, 9(OCT): 1–10. DOI:

Chinsembu, K.C. 2019. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Brazilian Journal of Pharmacognosy, 29(4): 504–528. DOI:

Cooper, C., Chapurlat, R., Chapurlat, R., Al-Daghri, N., Herrero-Beanumont, G., Bruyere, O., Rannou, F., Roth, R., Uebelhart, D. & Reginster, J.Y. 2019. Safety of Oral Non Selective Non Steroidal Anti Inflammatory Drugs in Osteoarthritis: What Does the Literature Say?. Drugs & Aging, 26(Suppl 1): 15-24. DOI:

Coyle, C.H., Martinez, L.J., Coleman, M.C., Spitz, D.R., Weintraub, N.L. & Kader, K.N. 2006. Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radical Biology and Medicine, 40(12): 2206–2213. DOI:

Dehsheikh, A.B., Sourestani, M.M., Dehsheikh, P.B., Vitalini, S., Iriti, M. & Mottaghipisheh, J. 2019. A comparative study of essential oil constituents and phenolic compounds of Arabian lilac (Vitex trifolia var. Purpurea): An evidence of season effects. Foods, 8(2): 1–14. DOI:

Devi, W.R. & Singh, C.B. 2014. Chemical composition, anti-dermatophytic activity, antioxidant and total phenolic content within the leaves essential oil of Vitex trifolia. International Journal of Phytocosmetic and Natural Ingredients, 1(1): 1-5. DOI:

Dong, J., Li, J., Cui, L., Wang, Y., Lin, J., Qu, Y. & Wang, H. 2018. Cortisol modulates inflammatory responses in LPS-stimulated RAW264.7 cells via the NF-ΚB and MAPK pathways. BMC Veterinary Research, 14(1): 1–10. DOI:

Fang, S.M., Liu, R., Li, L., Yao, J.L., Liu, E.W., Fan, G.W., Zhang, H. & Gao, X.M. 2019. Anti-inflammatory diterpenes from the fruits of Vitex trifolia L. var. simplicifolia Cham. Journal of Asian Natural Products Research, 21(10): 985–991. DOI:

Fokunang, C. 2018. Overview of non-steroidal anti-inflammatory drugs (nsaids) in resource limited countries. MOJ Toxicology, 4(1): 5–13. DOI:

Forrester, S J., Kikuchi, D.S., Hernandes, M.S., Xu, Q. & Griendling, K.K. 2019. Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research, 122(6): 877-902. DOI:

Ghafari, A.T., Jahidin, A.H., Zakaria, Y. & Hasan, M.H. 2021. phytochemical screening and high-performance thin-layer chromatography of Vitex trifolia leaves hydroalcoholic extract: Potential anti-inflammatory properties. Journal of Pharmaceutical Science International, 33(28A): 111-121. DOI:

Grevet, M.R., Schepartz, S.A. & Chabner, B.A. 1992. The national institute of cancer: Cancer drug discovery and development program. Seminars in Oncology, 19(6): 622-638.

Hernández, M.M., Heraso, C., Villarreal, M.L., Vargas-Arispuro, I. & Aranda, E. 1999. Biological activities of crude plant extracts from Vitex trifolia L. (Verbenaceae). Journal of Ethnopharmacology, 67(1): 37–44. DOI:

Huang, M., Zhang, L., Zhou, F., Ma, X., Li, Z., Zhong, T. & Zhang, Y. 2016. A new ursane triterpenoid possessing cytotoxicity from the fruits of Vitex trifolia var. simplicifolia. Chemistry of Natural Compounds, 52(4): 660–663. DOI:

Jang, Y., Kim, M. & Hwang, S.W. 2020. Molecular mechanism underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. Journal of Neuroinflammation, 17(30): 1-30. DOI:

Jangwan, J.S., Aquino, R.P., Mencherini, T., Picerno, P. & Singh, R. 2014. Chemical constituents of ethanol extract of leaves and molluscicidal activity of crude extracts from Vitex trifolia linn. Herba Polonica, 59(4): 19–32. DOI:

Kasote, D.M., Surendra, Katyare, S.S., Hegde, M.V. & Bae, H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8): 982–991. DOI:

Keshari, A.K., Verma, A.K., Kumar, T. & Srivastava, R. 2015. Oxidative stress: A review. The International Journal of Science & Technoledge, 3(7): 155-162.

Khanna, R., Karki, K., Pende, D. & Khanna, R. 2014. Inflammation, Free radical damage, oxidative stress and cancer. Interdisciplinary Journal of Microinflammation, 1(1): 1–5.

Kim, Y.J., Lee, J.Y., Kim, H.J., Kim, D.H., Lee, T.H., Kang, M.S. & Park, W. 2018. Anti-inflammatory effects of Angelica sinensis (Oliv.) Diels water extract on RAW 264.7 induced with lipopolysaccharide. Nutrients, 10(5): 647. DOI:

Ko, E.Y., Cho, S.H., Kwon, S.H., Eom, C.Y., Jeong, M.S., Lee, W.W., Kim, S.Y., Heo, S.J., Ahn, G., Lee, K.P., Jeon, Y.J. & Kim, S.Y. 2017. The roles of NF-kB and ROS in regulation of pro-inflammatory mediators of inflammation induction in LPS-stimulated zebrafish emryos. Fish & Shellfish Immunology, 68(2017): 525-529. DOI:

Kulkarni, L.A. 2011. Anti-inflammatory activity of Vitex trifolia Linn. (Verbaneacae) leaves extracts. International Journal of Pharmaceutical Sciences and Research, 2(8): 2037-2040.

Kulkarni, L.A. 2012. Vitex trifolia Linn. (Verbaneaceae): A review on pharmacological and biological effects, isolated and known potential phytoconstituents of therapeutic importance. International Journal of Research in Pharmaceutical Sciences, 3(3): 441–445.

Kwon, D.H., Cha, H.J., Lee, H., Hong, S.H., Park, C., Park, S.H., Kim, G.Y., Kim, S., Kim, H.S., Hwang, H.J., & Choi, Y.H. 2019. Protective effect of glutathione against oxidative stress-induced cytotoxicity in RAW 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway. Antioxidants, 8(4): 82. DOI:

Lawrence, T. & Fong, C. 2010. The resolution of inflammation: Anti-inflammatory roles for NF-κB. International Journal of Biochemistry and Cell Biology, 42(4): 519–523. DOI:

Lee, G., Jung, K.H., Ji, E.S. & Bae, H. 2017. Pyranopyran-1,8-dione, an active compound from vitices fructus, attenuates cigarette-smoke induced lung inflammation in mice. International Journal of Molecular Sciences, 18(7): 1–10. DOI:

Lee, S.M., Lee, Y.J., Kim, Y.C., Kim, J.S., Kang, D.G. & Lee, H.S. 2012. Vascular protective role of vitexicarpin isolated from Vitex rotundifolia in human umbilical vein endothelial cells. Inflammation, 35(2): 584–593. DOI:

Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L.A. & Selinger, B. 2015. Hydrogen peroxide–production, fate and role in redox signaling of tumor cells. Cell Communication and Signaling, 13(39): 2015. DOI:

Lingappan, K. 2018. NF-κB in Oxidative Stress. Current Opinion in Toxicology, 7: 81-86 DOI:

Liou, C.J., Len, W. Bin, Wu, S.J., Lin, C.F., Wu, X.L. & Huang, W.C. 2014. Casticin inhibits COX-2 and iNOS expression via suppression of NF-κB and MAPK signaling in lipopolysaccharide-stimulated mouse macrophages. Journal of Ethnopharmacology, 158(2014): 310–316. DOI:

Luo, P., Yu, Q., Liu, S. N., Xia, W. J., Fang, Y. Y., An, L. K., Gu, Q. & Xu, J. 2017. Diterpenoids with diverse scaffolds from Vitex trifolia as potential topoisomerase I inhibitor. Fitoterapia, 120(May): 108–116. DOI:

Manaf, S.R., Daud, H.M., Alimon, A.R., Mustapha, N.M., Hamdan, R.H., Muniandy, K.M., Mohamed, N.F.A., Razak, R. & Hamid, N.H. 2016. The Effects of Vitex trifolia, Strobilanthes crispus and aloe vera herbal-mixed dietary supplementation on growth performance and disease resistance in red hybrid tilapia (Oreochromis sp.). Journal of Aquaculture Research & Development, 7: 425.

Marcum, Z.A., & Hanlon, J.T. 2010. Recognizing the risk of chronic nonsteroidal anti-inflammatory drug use in older adult. Annals of Longterm Care, 18(9): 24-27.

Matsui, M., Adib-Conquy, M., Coste, A., Kumar-Roiné, S., Pipy, B., Laurent, D. & Pauillac, S. 2012. Aqueous extract of Vitex trifolia L. (Labiatae) inhibits LPS-dependent regulation of inflammatory mediators in RAW 264.7 macrophages through inhibition of Nuclear Factor kappa B translocation and expression. Journal of Ethnopharmacology, 143(1): 24–32. DOI:

Matsui, M., Kumar-Roine, S., Darius, H.T., Chinain, M., Laurent, D. & Pauillac, S. 2009. Characterisation of the anti-inflammatory potential of Vitex trifolia L. (Labiatae), a multipurpose plant of the Pacific traditional medicine. Journal of Ethnopharmacology, 126(3): 427–433. DOI:

Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature, 454(7203): 428–435. DOI:

Meena, A.K., Niranjan, U.S., Rao, M.M., Padhi, M.M. & Babu, R. 2011. A review of the important chemical constituents and medicinal uses of Vitex genus. Asian Journal of Traditional Medicines, 6(2): 54–60.

Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P. & Malik, A.B. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling, 20(7): 1126–1167. DOI:

Mutalib, N.A., & Latip, N.A. 2020. Antagonistic Drug-herb Interactions between Clinacanthus nutans and Cyclophosphamide on WRL 68 Cell Line. Pharmaceutical Sciences and Research, 7(2): 81–89. DOI:

Naghavi, M. 2019. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 5: 17-30.

Nakao, N., Kurokawa, T., Nonami, T., Tumurkhuu, G., Koide, N. & Yokochi, T. 2008. Hydrogen peroxide induces the production of tumor necrosis factor-α in RAW 264.7 macrophage cells via activation of p38 and stress-activated protein kinase. Innate Immunity, 14(3): 190–196. DOI:

Nishina, A., Itagaki, M., Sato, D., Kimura, H., Hirai, Y., Phay, N. & Makishima, M. 2017. The rosiglitazone-like effects of Vitexilactone, a constituent from Vitex trifolia L. in 3T3-L1 preadipocytes. Molecules, 22(11): 1–13. DOI:

Nkala, B.A., Mbongawa, H.P. & Qwebani-Qgunley, T. 2020. The evaluation of cytotoxicity and anti-inflammatory effects of selected South African medicinal plants against C2C12 cells and RAW 264.7 cells. International Journal of Scientific and Research Publications (IJSRP), 10(2): 207–220. DOI:

Nunes, R., Arantes, M.B., Menezes, S., Pereira, D.F., Leandro, L., Passos, M.D.S., & Moraes, L.P.D. 2020. Plants as Sources of Anti-Inflammatory Agents. Molecules, 25(3726): 1–22. DOI:

Nurul Amin, M., Siddiqui, S.A., Ibrahim, M., Lukman Hakim, M., Ahammed, Kabir, A. & Sultana, F. 2020. Inflammatory cytokine in the pathogenesis of cardiovascular disease and cancer. Medicine, 8: 1-12. DOI:

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Anthony, S. 2009. Agroforestree Database: a tree reference and selection guide version 4.0 (

Pahwa, R., Goyal, A., Bansal, P. & Jialal, I. 2020. Chronic inflammation. StatPearls [Internet]. Treasure Island (F.L.): StatPearls Publishing; 2021 Jan.

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. & Bitto, A. 2017. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017: 1–13. DOI:

Placha, D. & Jampilek, J. 2021. Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Naosystem. Pharmaceutics, 13(1): 64. DOI:

Rani, A. & Sharma, A. 2013. The genus Vitex: A review. Pharmacognosy Reviews, 7(14): 188–198. DOI:

Ranneh, Y., Ali, F., Akim, A.M., Abd Hamid, H., Khazaai, H. & Fadal, A. 2017. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Applied Biological Chemistry, 60(3): 327-338 DOI:

Ryter, S.W., Hong, P.K., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X. & Choi, A.M.K. 2007. Mechanisms of cell death in oxidative stress. Antioxidants and Redox Signaling, 9(1): 49–89. DOI:

Saklani, S., Mishra, A.P., Chandra, H., Atanassova, M.S., Stankovic, M., Sati, B., Shariati, M.A., Nigam, M., Khan, M.U., Plygun, S., Elmsellem, H. & Suleria, H.A.R. 2017. Comparative evaluation of polyphenol contents and antioxidant activities between ethanol extracts of Vitex negundo and Vitex trifolia L. Leaves by different methods. Plants, 6(4). DOI:

Samuel, S., Nguyen, T. & Choi, H.A. 2017. Pharmacologic characteristics of corticosteroids. Journal of Neurocritical Care, 10(2): 53–59. DOI:

Schieber, M. & Chandel, N.S. 2014. ROS function in redox signaling and oxidative stress. Current Biology, 24: R453-R462. DOI:

Sies, H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biology, 11(2017): 613-619. DOI:

Suchitra, M. & Cheriyan, B.V. 2018. Vitex trifolia: An ethnobotanical and pharmacological review. Asian Journal of Pharmaceutical and Clinical Research, 11(4): 12–14. DOI:

Tasneem, S., Liu, B., Li, B., Choudhary, M.I. & Wang, W. 2019. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacological Research, 139: 126–140. DOI:

Thalhamer, T., McGrath, M.A. & Harnett, M.M. 2008. MAPKs and their relevance to arthritis and inflammation. Rheumatology, 47(4): 409–414. DOI:

Thenmozhi, S., Vibha, S., Dhanalakshmi, M., Manjuladevi, K., Diwedi, S. & Subasini, U. 2013. Evaluation of anthelmintic activity of Vitex trifolia Linn. leaves against Pheretima posthuma. International Journal of Pharmaceutical & Biological Archives, 4(5): 878 – 880.

Tsai, T.Y., Li, C.Y., Livneh, H., Lin, I.H., Lu, M.C. & Yeh, C.C. 2016. Decreased risk of stroke in patients receiving traditional Chinese medicine for vertigo: A population-based cohort study. Journal of Ethnopharmacology, 184(2016): 138–143. DOI:

Tsuge, K., Inazumi, T., Shimamoto, A. & Sugimoto, Y. 2019. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. International Immunology, 31(9): 597–606. DOI:

Vimalanathan, S., Ignacimuthu, S. & Hudson, J.B. 2009. Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharmaceutical Biology, 47(5): 422–429. DOI:

Vrankova, S., Barta, A., Klimentova, J., Dovinova, I., Liskova, S., Dobesova, Z., Pechanova, O., Kunes, J. & Zicha, J. 2016. The regulatory role of nuclear factor kappa B in the heart of hereditary hypertriglyceridemic. Oxidative Medicine and Cellular Longevity, 2016: 9814 038. DOI:

Wang, T., Fu, X., Chen, Q., Patra, J.K., Wang, D., Wang, Z. & Gai, Z. 2019. Arachidonic acid metabolism and kidney inflammation. International Journal of Molecular Sciences, 20(15): 1–28. DOI:

Wee, H.N., Neo, S.Y., Singh, D., Yew, H.C., Qiu, Z.Y., Tsai, X.R.C., How, S.Y., Yip, K.Y.C., Tan, C.H. & Koh, H.L. 2020. Effects of Vitex trifolia L. Leaf extracts and phytoconstituents on cytokine production in human u937 macrophages. BMC Complementary Medicine and Therapies, 20(1): 1–15. DOI:

Wongrakpanich, S., Wongrakpanich, A., Melhado, K. & Rangaswami, J. 2018. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging and Disease, 9(1): 143–150. DOI:

Wragg, D., Leoni, S. & Casini, A. 2020. Aquaporin-driven hydrogen peroxide transport: A case of molecular mimicry?. RSC Chemical Biology, 1(5):390-394. DOI:

Xiang, J., Wan, C., Guo, R. & Guo, D. 2016. Is hydrogen peroxide a suitable apoptosis inducer for all cell types?. BioMed Research International, 2016: Article ID 7343965. DOI:

Yousefian, M., Shakour, N., Hosseinzadeh, H., Hayes, A.W., Hadizadeh, F. & Karimi, G. 2019. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine, 55: 200–213. DOI:

Zhang, H., Guo, Q., Liang, Z., Wang, M., Wang, B., Sun-Waterhouse, D., Waterhouse, G.I.N., Wang, J., Ma, C. & Kang, W. 2021. Anti-inflammatory and antioxidant effects of Chaetoglobosin Vb in LPS-induced RAW264.7 cells: Achieved via the MAPK and NF-κB signaling pathways. Food and Chemical Toxicology, 147: 111915. DOI:

Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y. & Dong, W. 2016. ROS and ROS-mediated cellular signalling. Oxidative Medicine and Cellular Longevity, 2016: Article ID 4350965 DOI:



How to Cite