ANTI-INFLAMMATORY EFFECTS OF Vitex trifolia LEAVES HYDROALCOHOLIC EXTRACT AGAINST HYDROGEN PEROXIDE (H2O2)- AND LIPOPOLYSACCHARIDE (LPS)-INDUCED RAW 264.7 CELLS

https://doi.org/10.55230/mabjournal.v51i4.28

Authors

  • AHMAD TAMIM GHAFARI Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia; Department of Pharmacology, Faculty of Pharmacy, Kabul University, Kabul 1006, Afghanistan
  • AISYAH HASYILA JAHIDIN Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia
  • YUSLINA ZAKARIA Faculty of Pharmacy, Universiti Teknologi MARA, Malaysia https://orcid.org/0000-0002-3214-9040
  • MIZATON HAZIZUL HASAN Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia

Keywords:

Anti-inflammatory, antioxidant, correlation, lipopolysaccharide, reactive oxygen species, Vitex trifolia

Abstract

Inflammation is the human body’s defensive response against harmful events and a hallmark of many chronic conditions. Commonly, pharmacological approaches to treat inflammation include the use of non-steroidal anti-inflammatory drugs (NSAIDs) that could potentially possess life-threatening side effects after prolonged use. Hence there is a need for safer alternatives with fewer possible side effects. Vitex trifolia is a shrub from the family Verbenaceae, which possesses potential anti-inflammatory effects and is traditionally used to treat inflammation-related diseases in several Asian countries. This study aimed to explore the antioxidant and anti-inflammatory effect of V. trifolia leaves hydroalcoholic extract (VT) against murine macrophages (RAW 264.7 cells) induced with hydrogen peroxide (H2O2) and lipopolysaccharide (LPS). The reactive oxygen species (ROS) production was evaluated in the H2O2-induced macrophages. On the other hand, the interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX) levels were quantified in the LPS-induced macrophages. VT (25 & 50 µg/mL) showed protective effects and significantly (p<0.05) increased the cell viability and reduced the ROS production compared to that of macrophages treated with 300 µM H2O2 alone. Additionally, VT (50 & 100 µg/mL) significantly (p<0.05) reduced LPS-induced TNF-α and IL-6 levels and COX activity compared to the macrophages treated with LPS (1 µg/mL), alone. However, VT and diclofenac had no inhibitory effect on IL-1β induced by LPS. Moreover, a significant positive correlation was found between VT antioxidant and anti-inflammatory effects. Concisely, these outcomes showed the potential antioxidant and anti-inflammatory effect of VT with a positive correlation between these protective actions. Therefore, our results suggest that VT may serve as a source of nutraceutical compounds with impending antioxidant and anti-inflammatory activities. However, further molecular investigations on the isolated compounds of the plant and in vivo studies are suggested for future work.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abd Aziz, S.M., Low, C.N., Chai, L.C., Abd Razak, S.S.N., Selamat, J., Son, R., Sarker, M.Z.I. & Khatib, A. 2011. Screening of selected Malaysian plants against several food borne pathogen bacteria. International Food Research Journal, 18(3): 1141–1147.

Abdul Hakeem, N.R.S., Md Yusof, N., Jahidin, A.H., Hasan, M.H., Mohsin, H.F. & Abdul Wahab, I. 2016. Vitex Species: Review on Phytochemistry and Pouch Design for Nutritional Benefits. Scientific Research Journal, 13(2): 15. DOI: https://doi.org/10.24191/srj.v13i2.5449

Adwas, A., Elsayed, A.S.I., Azab, A.E. & Quwaydir, A. 2019. Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology & Bioengineering, 6(1): 43–47. DOI: https://doi.org/10.15406/jabb.2019.06.00173

Al-Sheddi, E.S., Farshori, N.N., Al-Oqail, M.M., Musarrat, J., Al-Khedhairy, A.A. & Siddiqui, M.A. 2016) Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). Pharmaceutical Biology, 54(2): 314–321. DOI: https://doi.org/10.3109/13880209.2015.1035795

Anandan, R., Jayakar, B., Karar, B., Babuji, S., Manavalan, R. & Kumar, R.S. 2009. Effect of ethanol extract of flowers of Vitex trifolia Linn. on CCl4-induced hepatic injury in rats. Pakistan Journal of Pharmaceutical Sciences, 22(4): 391–394.

Ankalikar, A. & Vishwanathswany, A.H. 2017a. Effect of leaves of Vitex trifolia linn on different stages of inflammation. Indian Journal of Pharmaceutical Education and Research, 51(3): 461–471. DOI: https://doi.org/10.5530/ijper.51.3.74

Ankalikar, A. & Vishwanathswany, A.H. 2017. Effect of Vitex trifolia Linn and Solanum nigrum Linn on oxidative. Indian Journal of Health Sciences and Biomedical Research, 10(3): 269–275. DOI: https://doi.org/10.4103/kleuhsj.kleuhsj_11_17

Aye, M.M., Aung, H.T., Sein, M.M. & Armijos, C. 2019. A review on the phytochemistry, medicinal properties and pharmacological activities of 15 selected Myanmar medicinal plants. Molecules, 24(2): 1–34. DOI: https://doi.org/10.3390/molecules24020293

Bach, L.T., Dung, L.T., Tuan, N.T., Phuong, N.T., Kestemont, P., Quetin-Leclercq, J. & Hue, B.T.B. 2018. Antioxidant activity against hydrogen peroxide-induced cytotoxicity of Euphorbia hirta L. AIP Conference Proceedings, 2049(December): 1–6. DOI: https://doi.org/10.1063/1.5082519

Bahadori, M.B., Dinparast, L. & Zengin, G. 2016. The Genus Heracleum: A Comprehensive Review on Its Phytochemistry, Pharmacology, and Ethnobotanical Values as a Useful Herb. Comprehensive Reviews in Food Science and Food Safety, 16: 1018-1038. DOI: https://doi.org/10.1111/1541-4337.12222

Bellezza, I., Giambanco, I., Minelli, A & Donato, R. 2018. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica acta (BBA) - Molecular Cell Research, 1865(5): 721-733 DOI: https://doi.org/10.1016/j.bbamcr.2018.02.010

Biswas, S. K. 2016. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?. Oxidative Medicine and Cellular Longevity, 2016: 5698931. DOI: https://doi.org/10.1155/2016/5698931

Bjarnason, I., Scarpignato, C., Holmgren, E., Olszewski, M., Rainsford, K.D. & Lanas, A. 2018. Mechanisms of Damage to the Gastrointestinal Tract From Nonsteroidal Anti-Inflammatory Drugs. Gastroenterology, 154(3): 500–514. DOI: https://doi.org/10.1053/j.gastro.2017.10.049

Borish, L.C. & Steinke, J.W. 2003. Cytokines and chemokines. Journal of Allergy and Clinical Immunology, 111(2): 460–475. DOI: https://doi.org/10.1067/mai.2003.108

Celenghini, R.M.S., Vilegas, J.H.Y. & Lancas, F.M. 2001. Extraction and quantitative HPLC analysis of coumarin in hydroalcoholic extract of Mikania glomerata Spreng. (“guaco”) Leaves. Journal of the Brazilian Chemical Society, 12(6): 706–9. DOI: https://doi.org/10.1590/S0103-50532001000600003

Chan, E.W.C., Wong, S.K. & Chan, H.T. 2018. Casticin from Vitex species: a short review on its anticancer and anti-inflammatory properties. Journal of Integrative Medicine, 16(3): 147–152. DOI: https://doi.org/10.1016/j.joim.2018.03.001

Chemat, F., Vian, M.A. & Cravotto, G. 2012. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7): 8615–8627. DOI: https://doi.org/10.3390/ijms13078615

Chen, Linlin, Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. & Zhao, L. 2017. Inflammatory Responses and Inflammation-associated Diseases in Organs. Oncotarget, 9(6): 7204–7218. DOI: https://doi.org/10.18632/oncotarget.23208

Chen, X., Zhong, Z., Xu, Z., Chen, L. & Wang, Y. 2011. No protective effect of curcumin on hydrogen peroxide-induced cytotoxicity in HepG2 cells. Pharmacological Reports, 63(3): 724–732. DOI: https://doi.org/10.1016/S1734-1140(11)70584-9

Chen, Y., Zhou, Z. & Min, W. 2018. Mitochondria, oxidative stress and innate immunity. Frontiers in Physiology, 9(OCT): 1–10. DOI: https://doi.org/10.3389/fphys.2018.01487

Chinsembu, K.C. 2019. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Brazilian Journal of Pharmacognosy, 29(4): 504–528. DOI: https://doi.org/10.1016/j.bjp.2018.10.006

Cooper, C., Chapurlat, R., Chapurlat, R., Al-Daghri, N., Herrero-Beanumont, G., Bruyere, O., Rannou, F., Roth, R., Uebelhart, D. & Reginster, J.Y. 2019. Safety of Oral Non Selective Non Steroidal Anti Inflammatory Drugs in Osteoarthritis: What Does the Literature Say?. Drugs & Aging, 26(Suppl 1): 15-24. DOI: https://doi.org/10.1007/s40266-019-00660-1

Coyle, C.H., Martinez, L.J., Coleman, M.C., Spitz, D.R., Weintraub, N.L. & Kader, K.N. 2006. Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radical Biology and Medicine, 40(12): 2206–2213. https://doi.org/10.1016/j.freeradbiomed.2006.02.017 DOI: https://doi.org/10.1016/j.freeradbiomed.2006.02.017

Dehsheikh, A.B., Sourestani, M.M., Dehsheikh, P.B., Vitalini, S., Iriti, M. & Mottaghipisheh, J. 2019. A comparative study of essential oil constituents and phenolic compounds of Arabian lilac (Vitex trifolia var. Purpurea): An evidence of season effects. Foods, 8(2): 1–14. DOI: https://doi.org/10.3390/foods8020052

Devi, W.R. & Singh, C.B. 2014. Chemical composition, anti-dermatophytic activity, antioxidant and total phenolic content within the leaves essential oil of Vitex trifolia. International Journal of Phytocosmetic and Natural Ingredients, 1(1): 1-5. DOI: https://doi.org/10.15171/ijpni.2014.05

Dong, J., Li, J., Cui, L., Wang, Y., Lin, J., Qu, Y. & Wang, H. 2018. Cortisol modulates inflammatory responses in LPS-stimulated RAW264.7 cells via the NF-ΚB and MAPK pathways. BMC Veterinary Research, 14(1): 1–10. https://doi.org/10.1186/s12917-018-1360-0 DOI: https://doi.org/10.1186/s12917-018-1360-0

Fang, S.M., Liu, R., Li, L., Yao, J.L., Liu, E.W., Fan, G.W., Zhang, H. & Gao, X.M. 2019. Anti-inflammatory diterpenes from the fruits of Vitex trifolia L. var. simplicifolia Cham. Journal of Asian Natural Products Research, 21(10): 985–991. DOI: https://doi.org/10.1080/10286020.2018.1482881

Fokunang, C. 2018. Overview of non-steroidal anti-inflammatory drugs (nsaids) in resource limited countries. MOJ Toxicology, 4(1): 5–13. DOI: https://doi.org/10.15406/mojt.2018.03.00081

Forrester, S J., Kikuchi, D.S., Hernandes, M.S., Xu, Q. & Griendling, K.K. 2019. Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research, 122(6): 877-902. DOI: https://doi.org/10.1161/CIRCRESAHA.117.311401

Ghafari, A.T., Jahidin, A.H., Zakaria, Y. & Hasan, M.H. 2021. phytochemical screening and high-performance thin-layer chromatography of Vitex trifolia leaves hydroalcoholic extract: Potential anti-inflammatory properties. Journal of Pharmaceutical Science International, 33(28A): 111-121. DOI: https://doi.org/10.9734/jpri/2021/v33i28A31515

Grevet, M.R., Schepartz, S.A. & Chabner, B.A. 1992. The national institute of cancer: Cancer drug discovery and development program. Seminars in Oncology, 19(6): 622-638.

Hernández, M.M., Heraso, C., Villarreal, M.L., Vargas-Arispuro, I. & Aranda, E. 1999. Biological activities of crude plant extracts from Vitex trifolia L. (Verbenaceae). Journal of Ethnopharmacology, 67(1): 37–44. DOI: https://doi.org/10.1016/S0378-8741(99)00041-0

Huang, M., Zhang, L., Zhou, F., Ma, X., Li, Z., Zhong, T. & Zhang, Y. 2016. A new ursane triterpenoid possessing cytotoxicity from the fruits of Vitex trifolia var. simplicifolia. Chemistry of Natural Compounds, 52(4): 660–663. DOI: https://doi.org/10.1007/s10600-016-1733-1

Jang, Y., Kim, M. & Hwang, S.W. 2020. Molecular mechanism underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. Journal of Neuroinflammation, 17(30): 1-30. DOI: https://doi.org/10.1186/s12974-020-1703-1

Jangwan, J.S., Aquino, R.P., Mencherini, T., Picerno, P. & Singh, R. 2014. Chemical constituents of ethanol extract of leaves and molluscicidal activity of crude extracts from Vitex trifolia linn. Herba Polonica, 59(4): 19–32. DOI: https://doi.org/10.2478/hepo-2013-0021

Kasote, D.M., Surendra, Katyare, S.S., Hegde, M.V. & Bae, H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8): 982–991. DOI: https://doi.org/10.7150/ijbs.12096

Keshari, A.K., Verma, A.K., Kumar, T. & Srivastava, R. 2015. Oxidative stress: A review. The International Journal of Science & Technoledge, 3(7): 155-162.

Khanna, R., Karki, K., Pende, D. & Khanna, R. 2014. Inflammation, Free radical damage, oxidative stress and cancer. Interdisciplinary Journal of Microinflammation, 1(1): 1–5.

Kim, Y.J., Lee, J.Y., Kim, H.J., Kim, D.H., Lee, T.H., Kang, M.S. & Park, W. 2018. Anti-inflammatory effects of Angelica sinensis (Oliv.) Diels water extract on RAW 264.7 induced with lipopolysaccharide. Nutrients, 10(5): 647. DOI: https://doi.org/10.3390/nu10050647

Ko, E.Y., Cho, S.H., Kwon, S.H., Eom, C.Y., Jeong, M.S., Lee, W.W., Kim, S.Y., Heo, S.J., Ahn, G., Lee, K.P., Jeon, Y.J. & Kim, S.Y. 2017. The roles of NF-kB and ROS in regulation of pro-inflammatory mediators of inflammation induction in LPS-stimulated zebrafish emryos. Fish & Shellfish Immunology, 68(2017): 525-529. DOI: https://doi.org/10.1016/j.fsi.2017.07.041

Kulkarni, L.A. 2011. Anti-inflammatory activity of Vitex trifolia Linn. (Verbaneacae) leaves extracts. International Journal of Pharmaceutical Sciences and Research, 2(8): 2037-2040.

Kulkarni, L.A. 2012. Vitex trifolia Linn. (Verbaneaceae): A review on pharmacological and biological effects, isolated and known potential phytoconstituents of therapeutic importance. International Journal of Research in Pharmaceutical Sciences, 3(3): 441–445.

Kwon, D.H., Cha, H.J., Lee, H., Hong, S.H., Park, C., Park, S.H., Kim, G.Y., Kim, S., Kim, H.S., Hwang, H.J., & Choi, Y.H. 2019. Protective effect of glutathione against oxidative stress-induced cytotoxicity in RAW 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway. Antioxidants, 8(4): 82. DOI: https://doi.org/10.3390/antiox8040082

Lawrence, T. & Fong, C. 2010. The resolution of inflammation: Anti-inflammatory roles for NF-κB. International Journal of Biochemistry and Cell Biology, 42(4): 519–523. DOI: https://doi.org/10.1016/j.biocel.2009.12.016

Lee, G., Jung, K.H., Ji, E.S. & Bae, H. 2017. Pyranopyran-1,8-dione, an active compound from vitices fructus, attenuates cigarette-smoke induced lung inflammation in mice. International Journal of Molecular Sciences, 18(7): 1–10. DOI: https://doi.org/10.3390/ijms18071602

Lee, S.M., Lee, Y.J., Kim, Y.C., Kim, J.S., Kang, D.G. & Lee, H.S. 2012. Vascular protective role of vitexicarpin isolated from Vitex rotundifolia in human umbilical vein endothelial cells. Inflammation, 35(2): 584–593. DOI: https://doi.org/10.1007/s10753-011-9349-x

Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L.A. & Selinger, B. 2015. Hydrogen peroxide–production, fate and role in redox signaling of tumor cells. Cell Communication and Signaling, 13(39): 2015. DOI: https://doi.org/10.1186/s12964-015-0118-6

Lingappan, K. 2018. NF-κB in Oxidative Stress. Current Opinion in Toxicology, 7: 81-86 DOI: https://doi.org/10.1016/j.cotox.2017.11.002

Liou, C.J., Len, W. Bin, Wu, S.J., Lin, C.F., Wu, X.L. & Huang, W.C. 2014. Casticin inhibits COX-2 and iNOS expression via suppression of NF-κB and MAPK signaling in lipopolysaccharide-stimulated mouse macrophages. Journal of Ethnopharmacology, 158(2014): 310–316. DOI: https://doi.org/10.1016/j.jep.2014.10.046

Luo, P., Yu, Q., Liu, S. N., Xia, W. J., Fang, Y. Y., An, L. K., Gu, Q. & Xu, J. 2017. Diterpenoids with diverse scaffolds from Vitex trifolia as potential topoisomerase I inhibitor. Fitoterapia, 120(May): 108–116. DOI: https://doi.org/10.1016/j.fitote.2017.06.006

Manaf, S.R., Daud, H.M., Alimon, A.R., Mustapha, N.M., Hamdan, R.H., Muniandy, K.M., Mohamed, N.F.A., Razak, R. & Hamid, N.H. 2016. The Effects of Vitex trifolia, Strobilanthes crispus and aloe vera herbal-mixed dietary supplementation on growth performance and disease resistance in red hybrid tilapia (Oreochromis sp.). Journal of Aquaculture Research & Development, 7: 425.

Marcum, Z.A., & Hanlon, J.T. 2010. Recognizing the risk of chronic nonsteroidal anti-inflammatory drug use in older adult. Annals of Longterm Care, 18(9): 24-27.

Matsui, M., Adib-Conquy, M., Coste, A., Kumar-Roiné, S., Pipy, B., Laurent, D. & Pauillac, S. 2012. Aqueous extract of Vitex trifolia L. (Labiatae) inhibits LPS-dependent regulation of inflammatory mediators in RAW 264.7 macrophages through inhibition of Nuclear Factor kappa B translocation and expression. Journal of Ethnopharmacology, 143(1): 24–32. DOI: https://doi.org/10.1016/j.jep.2012.05.043

Matsui, M., Kumar-Roine, S., Darius, H.T., Chinain, M., Laurent, D. & Pauillac, S. 2009. Characterisation of the anti-inflammatory potential of Vitex trifolia L. (Labiatae), a multipurpose plant of the Pacific traditional medicine. Journal of Ethnopharmacology, 126(3): 427–433. DOI: https://doi.org/10.1016/j.jep.2009.09.020

Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature, 454(7203): 428–435. DOI: https://doi.org/10.1038/nature07201

Meena, A.K., Niranjan, U.S., Rao, M.M., Padhi, M.M. & Babu, R. 2011. A review of the important chemical constituents and medicinal uses of Vitex genus. Asian Journal of Traditional Medicines, 6(2): 54–60.

Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P. & Malik, A.B. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling, 20(7): 1126–1167. DOI: https://doi.org/10.1089/ars.2012.5149

Mutalib, N.A., & Latip, N.A. 2020. Antagonistic Drug-herb Interactions between Clinacanthus nutans and Cyclophosphamide on WRL 68 Cell Line. Pharmaceutical Sciences and Research, 7(2): 81–89. DOI: https://doi.org/10.7454/psr.v7i2.1093

Naghavi, M. 2019. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 5: 17-30.

Nakao, N., Kurokawa, T., Nonami, T., Tumurkhuu, G., Koide, N. & Yokochi, T. 2008. Hydrogen peroxide induces the production of tumor necrosis factor-α in RAW 264.7 macrophage cells via activation of p38 and stress-activated protein kinase. Innate Immunity, 14(3): 190–196. DOI: https://doi.org/10.1177/1753425908093932

Nishina, A., Itagaki, M., Sato, D., Kimura, H., Hirai, Y., Phay, N. & Makishima, M. 2017. The rosiglitazone-like effects of Vitexilactone, a constituent from Vitex trifolia L. in 3T3-L1 preadipocytes. Molecules, 22(11): 1–13. DOI: https://doi.org/10.3390/molecules22112030

Nkala, B.A., Mbongawa, H.P. & Qwebani-Qgunley, T. 2020. The evaluation of cytotoxicity and anti-inflammatory effects of selected South African medicinal plants against C2C12 cells and RAW 264.7 cells. International Journal of Scientific and Research Publications (IJSRP), 10(2): 207–220. DOI: https://doi.org/10.29322/IJSRP.10.02.2020.p9830

Nunes, R., Arantes, M.B., Menezes, S., Pereira, D.F., Leandro, L., Passos, M.D.S., & Moraes, L.P.D. 2020. Plants as Sources of Anti-Inflammatory Agents. Molecules, 25(3726): 1–22. DOI: https://doi.org/10.3390/molecules25163726

Nurul Amin, M., Siddiqui, S.A., Ibrahim, M., Lukman Hakim, M., Ahammed, Kabir, A. & Sultana, F. 2020. Inflammatory cytokine in the pathogenesis of cardiovascular disease and cancer. Medicine, 8: 1-12. DOI: https://doi.org/10.1177/2050312120965752

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Anthony, S. 2009. Agroforestree Database: a tree reference and selection guide version 4.0 (http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp)

Pahwa, R., Goyal, A., Bansal, P. & Jialal, I. 2020. Chronic inflammation. StatPearls [Internet]. Treasure Island (F.L.): StatPearls Publishing; 2021 Jan.

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. & Bitto, A. 2017. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017: 1–13. DOI: https://doi.org/10.1155/2017/8416763

Placha, D. & Jampilek, J. 2021. Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Naosystem. Pharmaceutics, 13(1): 64. DOI: https://doi.org/10.3390/pharmaceutics13010064

Rani, A. & Sharma, A. 2013. The genus Vitex: A review. Pharmacognosy Reviews, 7(14): 188–198. DOI: https://doi.org/10.4103/0973-7847.120522

Ranneh, Y., Ali, F., Akim, A.M., Abd Hamid, H., Khazaai, H. & Fadal, A. 2017. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Applied Biological Chemistry, 60(3): 327-338 DOI: https://doi.org/10.1007/s13765-017-0285-9

Ryter, S.W., Hong, P.K., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X. & Choi, A.M.K. 2007. Mechanisms of cell death in oxidative stress. Antioxidants and Redox Signaling, 9(1): 49–89. DOI: https://doi.org/10.1089/ars.2007.9.49

Saklani, S., Mishra, A.P., Chandra, H., Atanassova, M.S., Stankovic, M., Sati, B., Shariati, M.A., Nigam, M., Khan, M.U., Plygun, S., Elmsellem, H. & Suleria, H.A.R. 2017. Comparative evaluation of polyphenol contents and antioxidant activities between ethanol extracts of Vitex negundo and Vitex trifolia L. Leaves by different methods. Plants, 6(4). DOI: https://doi.org/10.3390/plants6040045

Samuel, S., Nguyen, T. & Choi, H.A. 2017. Pharmacologic characteristics of corticosteroids. Journal of Neurocritical Care, 10(2): 53–59. DOI: https://doi.org/10.18700/jnc.170035

Schieber, M. & Chandel, N.S. 2014. ROS function in redox signaling and oxidative stress. Current Biology, 24: R453-R462. DOI: https://doi.org/10.1016/j.cub.2014.03.034

Sies, H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biology, 11(2017): 613-619. DOI: https://doi.org/10.1016/j.redox.2016.12.035

Suchitra, M. & Cheriyan, B.V. 2018. Vitex trifolia: An ethnobotanical and pharmacological review. Asian Journal of Pharmaceutical and Clinical Research, 11(4): 12–14. DOI: https://doi.org/10.22159/ajpcr.2018.v11s4.31689

Tasneem, S., Liu, B., Li, B., Choudhary, M.I. & Wang, W. 2019. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacological Research, 139: 126–140. DOI: https://doi.org/10.1016/j.phrs.2018.11.001

Thalhamer, T., McGrath, M.A. & Harnett, M.M. 2008. MAPKs and their relevance to arthritis and inflammation. Rheumatology, 47(4): 409–414. DOI: https://doi.org/10.1093/rheumatology/kem297

Thenmozhi, S., Vibha, S., Dhanalakshmi, M., Manjuladevi, K., Diwedi, S. & Subasini, U. 2013. Evaluation of anthelmintic activity of Vitex trifolia Linn. leaves against Pheretima posthuma. International Journal of Pharmaceutical & Biological Archives, 4(5): 878 – 880.

Tsai, T.Y., Li, C.Y., Livneh, H., Lin, I.H., Lu, M.C. & Yeh, C.C. 2016. Decreased risk of stroke in patients receiving traditional Chinese medicine for vertigo: A population-based cohort study. Journal of Ethnopharmacology, 184(2016): 138–143. DOI: https://doi.org/10.1016/j.jep.2016.03.008

Tsuge, K., Inazumi, T., Shimamoto, A. & Sugimoto, Y. 2019. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. International Immunology, 31(9): 597–606. DOI: https://doi.org/10.1093/intimm/dxz021

Vimalanathan, S., Ignacimuthu, S. & Hudson, J.B. 2009. Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharmaceutical Biology, 47(5): 422–429. DOI: https://doi.org/10.1080/13880200902800196

Vrankova, S., Barta, A., Klimentova, J., Dovinova, I., Liskova, S., Dobesova, Z., Pechanova, O., Kunes, J. & Zicha, J. 2016. The regulatory role of nuclear factor kappa B in the heart of hereditary hypertriglyceridemic. Oxidative Medicine and Cellular Longevity, 2016: 9814 038. DOI: https://doi.org/10.1155/2016/9814038

Wang, T., Fu, X., Chen, Q., Patra, J.K., Wang, D., Wang, Z. & Gai, Z. 2019. Arachidonic acid metabolism and kidney inflammation. International Journal of Molecular Sciences, 20(15): 1–28. DOI: https://doi.org/10.3390/ijms20153683

Wee, H.N., Neo, S.Y., Singh, D., Yew, H.C., Qiu, Z.Y., Tsai, X.R.C., How, S.Y., Yip, K.Y.C., Tan, C.H. & Koh, H.L. 2020. Effects of Vitex trifolia L. Leaf extracts and phytoconstituents on cytokine production in human u937 macrophages. BMC Complementary Medicine and Therapies, 20(1): 1–15. DOI: https://doi.org/10.1186/s12906-020-02884-w

Wongrakpanich, S., Wongrakpanich, A., Melhado, K. & Rangaswami, J. 2018. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging and Disease, 9(1): 143–150. DOI: https://doi.org/10.14336/AD.2017.0306

Wragg, D., Leoni, S. & Casini, A. 2020. Aquaporin-driven hydrogen peroxide transport: A case of molecular mimicry?. RSC Chemical Biology, 1(5):390-394. DOI: https://doi.org/10.1039/D0CB00160K

Xiang, J., Wan, C., Guo, R. & Guo, D. 2016. Is hydrogen peroxide a suitable apoptosis inducer for all cell types?. BioMed Research International, 2016: Article ID 7343965. DOI: https://doi.org/10.1155/2016/7343965

Yousefian, M., Shakour, N., Hosseinzadeh, H., Hayes, A.W., Hadizadeh, F. & Karimi, G. 2019. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine, 55: 200–213. DOI: https://doi.org/10.1016/j.phymed.2018.08.002

Zhang, H., Guo, Q., Liang, Z., Wang, M., Wang, B., Sun-Waterhouse, D., Waterhouse, G.I.N., Wang, J., Ma, C. & Kang, W. 2021. Anti-inflammatory and antioxidant effects of Chaetoglobosin Vb in LPS-induced RAW264.7 cells: Achieved via the MAPK and NF-κB signaling pathways. Food and Chemical Toxicology, 147: 111915. DOI: https://doi.org/10.1016/j.fct.2020.111915

Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y. & Dong, W. 2016. ROS and ROS-mediated cellular signalling. Oxidative Medicine and Cellular Longevity, 2016: Article ID 4350965 DOI: https://doi.org/10.1155/2016/4350965

Published

31-10-2022

How to Cite

GHAFARI, A. T., JAHIDIN, A. H., ZAKARIA, Y., & HAZIZUL HASAN, M. (2022). ANTI-INFLAMMATORY EFFECTS OF Vitex trifolia LEAVES HYDROALCOHOLIC EXTRACT AGAINST HYDROGEN PEROXIDE (H2O2)- AND LIPOPOLYSACCHARIDE (LPS)-INDUCED RAW 264.7 CELLS. Malaysian Applied Biology, 51(4), 185–200. https://doi.org/10.55230/mabjournal.v51i4.28