ANTI-INFLAMMATORY EFFECTS OF Vitex trifolia LEAVES HYDROALCOHOLIC EXTRACT AGAINST HYDROGEN PEROXIDE (H2O2)- AND LIPOPOLYSACCHARIDE (LPS)-INDUCED RAW 264.7 CELLS
Keywords:
Anti-inflammatory, antioxidant, correlation, lipopolysaccharide, reactive oxygen species, Vitex trifoliaAbstract
Inflammation is the human body’s defensive response against harmful events and a hallmark of many chronic conditions. Commonly, pharmacological approaches to treat inflammation include the use of non-steroidal anti-inflammatory drugs (NSAIDs) that could potentially possess life-threatening side effects after prolonged use. Hence there is a need for safer alternatives with fewer possible side effects. Vitex trifolia is a shrub from the family Verbenaceae, which possesses potential anti-inflammatory effects and is traditionally used to treat inflammation-related diseases in several Asian countries. This study aimed to explore the antioxidant and anti-inflammatory effect of V. trifolia leaves hydroalcoholic extract (VT) against murine macrophages (RAW 264.7 cells) induced with hydrogen peroxide (H2O2) and lipopolysaccharide (LPS). The reactive oxygen species (ROS) production was evaluated in the H2O2-induced macrophages. On the other hand, the interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX) levels were quantified in the LPS-induced macrophages. VT (25 & 50 µg/mL) showed protective effects and significantly (p<0.05) increased the cell viability and reduced the ROS production compared to that of macrophages treated with 300 µM H2O2 alone. Additionally, VT (50 & 100 µg/mL) significantly (p<0.05) reduced LPS-induced TNF-α and IL-6 levels and COX activity compared to the macrophages treated with LPS (1 µg/mL), alone. However, VT and diclofenac had no inhibitory effect on IL-1β induced by LPS. Moreover, a significant positive correlation was found between VT antioxidant and anti-inflammatory effects. Concisely, these outcomes showed the potential antioxidant and anti-inflammatory effect of VT with a positive correlation between these protective actions. Therefore, our results suggest that VT may serve as a source of nutraceutical compounds with impending antioxidant and anti-inflammatory activities. However, further molecular investigations on the isolated compounds of the plant and in vivo studies are suggested for future work.
Downloads
Metrics
References
Abd Aziz, S.M., Low, C.N., Chai, L.C., Abd Razak, S.S.N., Selamat, J., Son, R., Sarker, M.Z.I. & Khatib, A. 2011. Screening of selected Malaysian plants against several food borne pathogen bacteria. International Food Research Journal, 18(3): 1141–1147.
Abdul Hakeem, N.R.S., Md Yusof, N., Jahidin, A.H., Hasan, M.H., Mohsin, H.F. & Abdul Wahab, I. 2016. Vitex Species: Review on Phytochemistry and Pouch Design for Nutritional Benefits. Scientific Research Journal, 13(2): 15. DOI: https://doi.org/10.24191/srj.v13i2.5449
Adwas, A., Elsayed, A.S.I., Azab, A.E. & Quwaydir, A. 2019. Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology & Bioengineering, 6(1): 43–47. DOI: https://doi.org/10.15406/jabb.2019.06.00173
Al-Sheddi, E.S., Farshori, N.N., Al-Oqail, M.M., Musarrat, J., Al-Khedhairy, A.A. & Siddiqui, M.A. 2016) Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). Pharmaceutical Biology, 54(2): 314–321. DOI: https://doi.org/10.3109/13880209.2015.1035795
Anandan, R., Jayakar, B., Karar, B., Babuji, S., Manavalan, R. & Kumar, R.S. 2009. Effect of ethanol extract of flowers of Vitex trifolia Linn. on CCl4-induced hepatic injury in rats. Pakistan Journal of Pharmaceutical Sciences, 22(4): 391–394.
Ankalikar, A. & Vishwanathswany, A.H. 2017a. Effect of leaves of Vitex trifolia linn on different stages of inflammation. Indian Journal of Pharmaceutical Education and Research, 51(3): 461–471. DOI: https://doi.org/10.5530/ijper.51.3.74
Ankalikar, A. & Vishwanathswany, A.H. 2017. Effect of Vitex trifolia Linn and Solanum nigrum Linn on oxidative. Indian Journal of Health Sciences and Biomedical Research, 10(3): 269–275. DOI: https://doi.org/10.4103/kleuhsj.kleuhsj_11_17
Aye, M.M., Aung, H.T., Sein, M.M. & Armijos, C. 2019. A review on the phytochemistry, medicinal properties and pharmacological activities of 15 selected Myanmar medicinal plants. Molecules, 24(2): 1–34. DOI: https://doi.org/10.3390/molecules24020293
Bach, L.T., Dung, L.T., Tuan, N.T., Phuong, N.T., Kestemont, P., Quetin-Leclercq, J. & Hue, B.T.B. 2018. Antioxidant activity against hydrogen peroxide-induced cytotoxicity of Euphorbia hirta L. AIP Conference Proceedings, 2049(December): 1–6. DOI: https://doi.org/10.1063/1.5082519
Bahadori, M.B., Dinparast, L. & Zengin, G. 2016. The Genus Heracleum: A Comprehensive Review on Its Phytochemistry, Pharmacology, and Ethnobotanical Values as a Useful Herb. Comprehensive Reviews in Food Science and Food Safety, 16: 1018-1038. DOI: https://doi.org/10.1111/1541-4337.12222
Bellezza, I., Giambanco, I., Minelli, A & Donato, R. 2018. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica acta (BBA) - Molecular Cell Research, 1865(5): 721-733 DOI: https://doi.org/10.1016/j.bbamcr.2018.02.010
Biswas, S. K. 2016. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?. Oxidative Medicine and Cellular Longevity, 2016: 5698931. DOI: https://doi.org/10.1155/2016/5698931
Bjarnason, I., Scarpignato, C., Holmgren, E., Olszewski, M., Rainsford, K.D. & Lanas, A. 2018. Mechanisms of Damage to the Gastrointestinal Tract From Nonsteroidal Anti-Inflammatory Drugs. Gastroenterology, 154(3): 500–514. DOI: https://doi.org/10.1053/j.gastro.2017.10.049
Borish, L.C. & Steinke, J.W. 2003. Cytokines and chemokines. Journal of Allergy and Clinical Immunology, 111(2): 460–475. DOI: https://doi.org/10.1067/mai.2003.108
Celenghini, R.M.S., Vilegas, J.H.Y. & Lancas, F.M. 2001. Extraction and quantitative HPLC analysis of coumarin in hydroalcoholic extract of Mikania glomerata Spreng. (“guaco”) Leaves. Journal of the Brazilian Chemical Society, 12(6): 706–9. DOI: https://doi.org/10.1590/S0103-50532001000600003
Chan, E.W.C., Wong, S.K. & Chan, H.T. 2018. Casticin from Vitex species: a short review on its anticancer and anti-inflammatory properties. Journal of Integrative Medicine, 16(3): 147–152. DOI: https://doi.org/10.1016/j.joim.2018.03.001
Chemat, F., Vian, M.A. & Cravotto, G. 2012. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7): 8615–8627. DOI: https://doi.org/10.3390/ijms13078615
Chen, Linlin, Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. & Zhao, L. 2017. Inflammatory Responses and Inflammation-associated Diseases in Organs. Oncotarget, 9(6): 7204–7218. DOI: https://doi.org/10.18632/oncotarget.23208
Chen, X., Zhong, Z., Xu, Z., Chen, L. & Wang, Y. 2011. No protective effect of curcumin on hydrogen peroxide-induced cytotoxicity in HepG2 cells. Pharmacological Reports, 63(3): 724–732. DOI: https://doi.org/10.1016/S1734-1140(11)70584-9
Chen, Y., Zhou, Z. & Min, W. 2018. Mitochondria, oxidative stress and innate immunity. Frontiers in Physiology, 9(OCT): 1–10. DOI: https://doi.org/10.3389/fphys.2018.01487
Chinsembu, K.C. 2019. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Brazilian Journal of Pharmacognosy, 29(4): 504–528. DOI: https://doi.org/10.1016/j.bjp.2018.10.006
Cooper, C., Chapurlat, R., Chapurlat, R., Al-Daghri, N., Herrero-Beanumont, G., Bruyere, O., Rannou, F., Roth, R., Uebelhart, D. & Reginster, J.Y. 2019. Safety of Oral Non Selective Non Steroidal Anti Inflammatory Drugs in Osteoarthritis: What Does the Literature Say?. Drugs & Aging, 26(Suppl 1): 15-24. DOI: https://doi.org/10.1007/s40266-019-00660-1
Coyle, C.H., Martinez, L.J., Coleman, M.C., Spitz, D.R., Weintraub, N.L. & Kader, K.N. 2006. Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radical Biology and Medicine, 40(12): 2206–2213. https://doi.org/10.1016/j.freeradbiomed.2006.02.017 DOI: https://doi.org/10.1016/j.freeradbiomed.2006.02.017
Dehsheikh, A.B., Sourestani, M.M., Dehsheikh, P.B., Vitalini, S., Iriti, M. & Mottaghipisheh, J. 2019. A comparative study of essential oil constituents and phenolic compounds of Arabian lilac (Vitex trifolia var. Purpurea): An evidence of season effects. Foods, 8(2): 1–14. DOI: https://doi.org/10.3390/foods8020052
Devi, W.R. & Singh, C.B. 2014. Chemical composition, anti-dermatophytic activity, antioxidant and total phenolic content within the leaves essential oil of Vitex trifolia. International Journal of Phytocosmetic and Natural Ingredients, 1(1): 1-5. DOI: https://doi.org/10.15171/ijpni.2014.05
Dong, J., Li, J., Cui, L., Wang, Y., Lin, J., Qu, Y. & Wang, H. 2018. Cortisol modulates inflammatory responses in LPS-stimulated RAW264.7 cells via the NF-ΚB and MAPK pathways. BMC Veterinary Research, 14(1): 1–10. https://doi.org/10.1186/s12917-018-1360-0 DOI: https://doi.org/10.1186/s12917-018-1360-0
Fang, S.M., Liu, R., Li, L., Yao, J.L., Liu, E.W., Fan, G.W., Zhang, H. & Gao, X.M. 2019. Anti-inflammatory diterpenes from the fruits of Vitex trifolia L. var. simplicifolia Cham. Journal of Asian Natural Products Research, 21(10): 985–991. DOI: https://doi.org/10.1080/10286020.2018.1482881
Fokunang, C. 2018. Overview of non-steroidal anti-inflammatory drugs (nsaids) in resource limited countries. MOJ Toxicology, 4(1): 5–13. DOI: https://doi.org/10.15406/mojt.2018.03.00081
Forrester, S J., Kikuchi, D.S., Hernandes, M.S., Xu, Q. & Griendling, K.K. 2019. Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research, 122(6): 877-902. DOI: https://doi.org/10.1161/CIRCRESAHA.117.311401
Ghafari, A.T., Jahidin, A.H., Zakaria, Y. & Hasan, M.H. 2021. phytochemical screening and high-performance thin-layer chromatography of Vitex trifolia leaves hydroalcoholic extract: Potential anti-inflammatory properties. Journal of Pharmaceutical Science International, 33(28A): 111-121. DOI: https://doi.org/10.9734/jpri/2021/v33i28A31515
Grevet, M.R., Schepartz, S.A. & Chabner, B.A. 1992. The national institute of cancer: Cancer drug discovery and development program. Seminars in Oncology, 19(6): 622-638.
Hernández, M.M., Heraso, C., Villarreal, M.L., Vargas-Arispuro, I. & Aranda, E. 1999. Biological activities of crude plant extracts from Vitex trifolia L. (Verbenaceae). Journal of Ethnopharmacology, 67(1): 37–44. DOI: https://doi.org/10.1016/S0378-8741(99)00041-0
Huang, M., Zhang, L., Zhou, F., Ma, X., Li, Z., Zhong, T. & Zhang, Y. 2016. A new ursane triterpenoid possessing cytotoxicity from the fruits of Vitex trifolia var. simplicifolia. Chemistry of Natural Compounds, 52(4): 660–663. DOI: https://doi.org/10.1007/s10600-016-1733-1
Jang, Y., Kim, M. & Hwang, S.W. 2020. Molecular mechanism underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. Journal of Neuroinflammation, 17(30): 1-30. DOI: https://doi.org/10.1186/s12974-020-1703-1
Jangwan, J.S., Aquino, R.P., Mencherini, T., Picerno, P. & Singh, R. 2014. Chemical constituents of ethanol extract of leaves and molluscicidal activity of crude extracts from Vitex trifolia linn. Herba Polonica, 59(4): 19–32. DOI: https://doi.org/10.2478/hepo-2013-0021
Kasote, D.M., Surendra, Katyare, S.S., Hegde, M.V. & Bae, H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8): 982–991. DOI: https://doi.org/10.7150/ijbs.12096
Keshari, A.K., Verma, A.K., Kumar, T. & Srivastava, R. 2015. Oxidative stress: A review. The International Journal of Science & Technoledge, 3(7): 155-162.
Khanna, R., Karki, K., Pende, D. & Khanna, R. 2014. Inflammation, Free radical damage, oxidative stress and cancer. Interdisciplinary Journal of Microinflammation, 1(1): 1–5.
Kim, Y.J., Lee, J.Y., Kim, H.J., Kim, D.H., Lee, T.H., Kang, M.S. & Park, W. 2018. Anti-inflammatory effects of Angelica sinensis (Oliv.) Diels water extract on RAW 264.7 induced with lipopolysaccharide. Nutrients, 10(5): 647. DOI: https://doi.org/10.3390/nu10050647
Ko, E.Y., Cho, S.H., Kwon, S.H., Eom, C.Y., Jeong, M.S., Lee, W.W., Kim, S.Y., Heo, S.J., Ahn, G., Lee, K.P., Jeon, Y.J. & Kim, S.Y. 2017. The roles of NF-kB and ROS in regulation of pro-inflammatory mediators of inflammation induction in LPS-stimulated zebrafish emryos. Fish & Shellfish Immunology, 68(2017): 525-529. DOI: https://doi.org/10.1016/j.fsi.2017.07.041
Kulkarni, L.A. 2011. Anti-inflammatory activity of Vitex trifolia Linn. (Verbaneacae) leaves extracts. International Journal of Pharmaceutical Sciences and Research, 2(8): 2037-2040.
Kulkarni, L.A. 2012. Vitex trifolia Linn. (Verbaneaceae): A review on pharmacological and biological effects, isolated and known potential phytoconstituents of therapeutic importance. International Journal of Research in Pharmaceutical Sciences, 3(3): 441–445.
Kwon, D.H., Cha, H.J., Lee, H., Hong, S.H., Park, C., Park, S.H., Kim, G.Y., Kim, S., Kim, H.S., Hwang, H.J., & Choi, Y.H. 2019. Protective effect of glutathione against oxidative stress-induced cytotoxicity in RAW 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway. Antioxidants, 8(4): 82. DOI: https://doi.org/10.3390/antiox8040082
Lawrence, T. & Fong, C. 2010. The resolution of inflammation: Anti-inflammatory roles for NF-κB. International Journal of Biochemistry and Cell Biology, 42(4): 519–523. DOI: https://doi.org/10.1016/j.biocel.2009.12.016
Lee, G., Jung, K.H., Ji, E.S. & Bae, H. 2017. Pyranopyran-1,8-dione, an active compound from vitices fructus, attenuates cigarette-smoke induced lung inflammation in mice. International Journal of Molecular Sciences, 18(7): 1–10. DOI: https://doi.org/10.3390/ijms18071602
Lee, S.M., Lee, Y.J., Kim, Y.C., Kim, J.S., Kang, D.G. & Lee, H.S. 2012. Vascular protective role of vitexicarpin isolated from Vitex rotundifolia in human umbilical vein endothelial cells. Inflammation, 35(2): 584–593. DOI: https://doi.org/10.1007/s10753-011-9349-x
Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L.A. & Selinger, B. 2015. Hydrogen peroxide–production, fate and role in redox signaling of tumor cells. Cell Communication and Signaling, 13(39): 2015. DOI: https://doi.org/10.1186/s12964-015-0118-6
Lingappan, K. 2018. NF-κB in Oxidative Stress. Current Opinion in Toxicology, 7: 81-86 DOI: https://doi.org/10.1016/j.cotox.2017.11.002
Liou, C.J., Len, W. Bin, Wu, S.J., Lin, C.F., Wu, X.L. & Huang, W.C. 2014. Casticin inhibits COX-2 and iNOS expression via suppression of NF-κB and MAPK signaling in lipopolysaccharide-stimulated mouse macrophages. Journal of Ethnopharmacology, 158(2014): 310–316. DOI: https://doi.org/10.1016/j.jep.2014.10.046
Luo, P., Yu, Q., Liu, S. N., Xia, W. J., Fang, Y. Y., An, L. K., Gu, Q. & Xu, J. 2017. Diterpenoids with diverse scaffolds from Vitex trifolia as potential topoisomerase I inhibitor. Fitoterapia, 120(May): 108–116. DOI: https://doi.org/10.1016/j.fitote.2017.06.006
Manaf, S.R., Daud, H.M., Alimon, A.R., Mustapha, N.M., Hamdan, R.H., Muniandy, K.M., Mohamed, N.F.A., Razak, R. & Hamid, N.H. 2016. The Effects of Vitex trifolia, Strobilanthes crispus and aloe vera herbal-mixed dietary supplementation on growth performance and disease resistance in red hybrid tilapia (Oreochromis sp.). Journal of Aquaculture Research & Development, 7: 425.
Marcum, Z.A., & Hanlon, J.T. 2010. Recognizing the risk of chronic nonsteroidal anti-inflammatory drug use in older adult. Annals of Longterm Care, 18(9): 24-27.
Matsui, M., Adib-Conquy, M., Coste, A., Kumar-Roiné, S., Pipy, B., Laurent, D. & Pauillac, S. 2012. Aqueous extract of Vitex trifolia L. (Labiatae) inhibits LPS-dependent regulation of inflammatory mediators in RAW 264.7 macrophages through inhibition of Nuclear Factor kappa B translocation and expression. Journal of Ethnopharmacology, 143(1): 24–32. DOI: https://doi.org/10.1016/j.jep.2012.05.043
Matsui, M., Kumar-Roine, S., Darius, H.T., Chinain, M., Laurent, D. & Pauillac, S. 2009. Characterisation of the anti-inflammatory potential of Vitex trifolia L. (Labiatae), a multipurpose plant of the Pacific traditional medicine. Journal of Ethnopharmacology, 126(3): 427–433. DOI: https://doi.org/10.1016/j.jep.2009.09.020
Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature, 454(7203): 428–435. DOI: https://doi.org/10.1038/nature07201
Meena, A.K., Niranjan, U.S., Rao, M.M., Padhi, M.M. & Babu, R. 2011. A review of the important chemical constituents and medicinal uses of Vitex genus. Asian Journal of Traditional Medicines, 6(2): 54–60.
Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P. & Malik, A.B. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling, 20(7): 1126–1167. DOI: https://doi.org/10.1089/ars.2012.5149
Mutalib, N.A., & Latip, N.A. 2020. Antagonistic Drug-herb Interactions between Clinacanthus nutans and Cyclophosphamide on WRL 68 Cell Line. Pharmaceutical Sciences and Research, 7(2): 81–89. DOI: https://doi.org/10.7454/psr.v7i2.1093
Naghavi, M. 2019. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 5: 17-30.
Nakao, N., Kurokawa, T., Nonami, T., Tumurkhuu, G., Koide, N. & Yokochi, T. 2008. Hydrogen peroxide induces the production of tumor necrosis factor-α in RAW 264.7 macrophage cells via activation of p38 and stress-activated protein kinase. Innate Immunity, 14(3): 190–196. DOI: https://doi.org/10.1177/1753425908093932
Nishina, A., Itagaki, M., Sato, D., Kimura, H., Hirai, Y., Phay, N. & Makishima, M. 2017. The rosiglitazone-like effects of Vitexilactone, a constituent from Vitex trifolia L. in 3T3-L1 preadipocytes. Molecules, 22(11): 1–13. DOI: https://doi.org/10.3390/molecules22112030
Nkala, B.A., Mbongawa, H.P. & Qwebani-Qgunley, T. 2020. The evaluation of cytotoxicity and anti-inflammatory effects of selected South African medicinal plants against C2C12 cells and RAW 264.7 cells. International Journal of Scientific and Research Publications (IJSRP), 10(2): 207–220. DOI: https://doi.org/10.29322/IJSRP.10.02.2020.p9830
Nunes, R., Arantes, M.B., Menezes, S., Pereira, D.F., Leandro, L., Passos, M.D.S., & Moraes, L.P.D. 2020. Plants as Sources of Anti-Inflammatory Agents. Molecules, 25(3726): 1–22. DOI: https://doi.org/10.3390/molecules25163726
Nurul Amin, M., Siddiqui, S.A., Ibrahim, M., Lukman Hakim, M., Ahammed, Kabir, A. & Sultana, F. 2020. Inflammatory cytokine in the pathogenesis of cardiovascular disease and cancer. Medicine, 8: 1-12. DOI: https://doi.org/10.1177/2050312120965752
Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Anthony, S. 2009. Agroforestree Database: a tree reference and selection guide version 4.0 (http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp)
Pahwa, R., Goyal, A., Bansal, P. & Jialal, I. 2020. Chronic inflammation. StatPearls [Internet]. Treasure Island (F.L.): StatPearls Publishing; 2021 Jan.
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. & Bitto, A. 2017. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017: 1–13. DOI: https://doi.org/10.1155/2017/8416763
Placha, D. & Jampilek, J. 2021. Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Naosystem. Pharmaceutics, 13(1): 64. DOI: https://doi.org/10.3390/pharmaceutics13010064
Rani, A. & Sharma, A. 2013. The genus Vitex: A review. Pharmacognosy Reviews, 7(14): 188–198. DOI: https://doi.org/10.4103/0973-7847.120522
Ranneh, Y., Ali, F., Akim, A.M., Abd Hamid, H., Khazaai, H. & Fadal, A. 2017. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Applied Biological Chemistry, 60(3): 327-338 DOI: https://doi.org/10.1007/s13765-017-0285-9
Ryter, S.W., Hong, P.K., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X. & Choi, A.M.K. 2007. Mechanisms of cell death in oxidative stress. Antioxidants and Redox Signaling, 9(1): 49–89. DOI: https://doi.org/10.1089/ars.2007.9.49
Saklani, S., Mishra, A.P., Chandra, H., Atanassova, M.S., Stankovic, M., Sati, B., Shariati, M.A., Nigam, M., Khan, M.U., Plygun, S., Elmsellem, H. & Suleria, H.A.R. 2017. Comparative evaluation of polyphenol contents and antioxidant activities between ethanol extracts of Vitex negundo and Vitex trifolia L. Leaves by different methods. Plants, 6(4). DOI: https://doi.org/10.3390/plants6040045
Samuel, S., Nguyen, T. & Choi, H.A. 2017. Pharmacologic characteristics of corticosteroids. Journal of Neurocritical Care, 10(2): 53–59. DOI: https://doi.org/10.18700/jnc.170035
Schieber, M. & Chandel, N.S. 2014. ROS function in redox signaling and oxidative stress. Current Biology, 24: R453-R462. DOI: https://doi.org/10.1016/j.cub.2014.03.034
Sies, H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biology, 11(2017): 613-619. DOI: https://doi.org/10.1016/j.redox.2016.12.035
Suchitra, M. & Cheriyan, B.V. 2018. Vitex trifolia: An ethnobotanical and pharmacological review. Asian Journal of Pharmaceutical and Clinical Research, 11(4): 12–14. DOI: https://doi.org/10.22159/ajpcr.2018.v11s4.31689
Tasneem, S., Liu, B., Li, B., Choudhary, M.I. & Wang, W. 2019. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacological Research, 139: 126–140. DOI: https://doi.org/10.1016/j.phrs.2018.11.001
Thalhamer, T., McGrath, M.A. & Harnett, M.M. 2008. MAPKs and their relevance to arthritis and inflammation. Rheumatology, 47(4): 409–414. DOI: https://doi.org/10.1093/rheumatology/kem297
Thenmozhi, S., Vibha, S., Dhanalakshmi, M., Manjuladevi, K., Diwedi, S. & Subasini, U. 2013. Evaluation of anthelmintic activity of Vitex trifolia Linn. leaves against Pheretima posthuma. International Journal of Pharmaceutical & Biological Archives, 4(5): 878 – 880.
Tsai, T.Y., Li, C.Y., Livneh, H., Lin, I.H., Lu, M.C. & Yeh, C.C. 2016. Decreased risk of stroke in patients receiving traditional Chinese medicine for vertigo: A population-based cohort study. Journal of Ethnopharmacology, 184(2016): 138–143. DOI: https://doi.org/10.1016/j.jep.2016.03.008
Tsuge, K., Inazumi, T., Shimamoto, A. & Sugimoto, Y. 2019. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. International Immunology, 31(9): 597–606. DOI: https://doi.org/10.1093/intimm/dxz021
Vimalanathan, S., Ignacimuthu, S. & Hudson, J.B. 2009. Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharmaceutical Biology, 47(5): 422–429. DOI: https://doi.org/10.1080/13880200902800196
Vrankova, S., Barta, A., Klimentova, J., Dovinova, I., Liskova, S., Dobesova, Z., Pechanova, O., Kunes, J. & Zicha, J. 2016. The regulatory role of nuclear factor kappa B in the heart of hereditary hypertriglyceridemic. Oxidative Medicine and Cellular Longevity, 2016: 9814 038. DOI: https://doi.org/10.1155/2016/9814038
Wang, T., Fu, X., Chen, Q., Patra, J.K., Wang, D., Wang, Z. & Gai, Z. 2019. Arachidonic acid metabolism and kidney inflammation. International Journal of Molecular Sciences, 20(15): 1–28. DOI: https://doi.org/10.3390/ijms20153683
Wee, H.N., Neo, S.Y., Singh, D., Yew, H.C., Qiu, Z.Y., Tsai, X.R.C., How, S.Y., Yip, K.Y.C., Tan, C.H. & Koh, H.L. 2020. Effects of Vitex trifolia L. Leaf extracts and phytoconstituents on cytokine production in human u937 macrophages. BMC Complementary Medicine and Therapies, 20(1): 1–15. DOI: https://doi.org/10.1186/s12906-020-02884-w
Wongrakpanich, S., Wongrakpanich, A., Melhado, K. & Rangaswami, J. 2018. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging and Disease, 9(1): 143–150. DOI: https://doi.org/10.14336/AD.2017.0306
Wragg, D., Leoni, S. & Casini, A. 2020. Aquaporin-driven hydrogen peroxide transport: A case of molecular mimicry?. RSC Chemical Biology, 1(5):390-394. DOI: https://doi.org/10.1039/D0CB00160K
Xiang, J., Wan, C., Guo, R. & Guo, D. 2016. Is hydrogen peroxide a suitable apoptosis inducer for all cell types?. BioMed Research International, 2016: Article ID 7343965. DOI: https://doi.org/10.1155/2016/7343965
Yousefian, M., Shakour, N., Hosseinzadeh, H., Hayes, A.W., Hadizadeh, F. & Karimi, G. 2019. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine, 55: 200–213. DOI: https://doi.org/10.1016/j.phymed.2018.08.002
Zhang, H., Guo, Q., Liang, Z., Wang, M., Wang, B., Sun-Waterhouse, D., Waterhouse, G.I.N., Wang, J., Ma, C. & Kang, W. 2021. Anti-inflammatory and antioxidant effects of Chaetoglobosin Vb in LPS-induced RAW264.7 cells: Achieved via the MAPK and NF-κB signaling pathways. Food and Chemical Toxicology, 147: 111915. DOI: https://doi.org/10.1016/j.fct.2020.111915
Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y. & Dong, W. 2016. ROS and ROS-mediated cellular signalling. Oxidative Medicine and Cellular Longevity, 2016: Article ID 4350965 DOI: https://doi.org/10.1155/2016/4350965
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission