Antioxidant Activity of Vitamin C and E Versus Oxidative Stress Induced by Heavy Metals in Common Carp (Cyprinus carpio)

https://doi.org/10.55230/mabjournal.v52i2.2539

Authors

  • Hazbije Sahiti Department of Biology, Faculty of Mathematics and Natural Sciences, University of Prishtina “Hasan Prishtina”, Prishtina 10000, Kosovo
  • Kemajl Bislimi Department of Biology, Faculty of Mathematics and Natural Sciences, University of Prishtina “Hasan Prishtina”, Prishtina 10000, Kosovo
  • Agim Rexhepi Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, University of Prishtina “Hasan Prishtina”, Prishtina 10000, Kosovo
  • Zehra Kovaci Department of Biology, Faculty of Mathematics and Natural Sciences, University of Prishtina “Hasan Prishtina”, Prishtina 10000, Kosovo
  • Enis Dalo Department of Biology, Faculty of Mathematics and Natural Sciences, University of Prishtina “Hasan Prishtina”, Prishtina 10000, Kosovo

Keywords:

fish, pollution, antioxidant, vitamin, ameliorative effect

Abstract

The present study was undertaken to investigate the antioxidant activity of vitamins C and E singly and together in modulating levels of Malondialdehyde (MDA), total protein, and glucose in different organs (gills, liver, & muscles) and plasma of common carp exposed to heavy metals (Pb, Cd, & Hg). The division of fish into two groups (control group and experimental group) was done after acclimatization. Seven days after exposure to heavy metals, the results showed a significant increase in the level of MDA in all organs of the experimental group (B) compared to those of the control group (A). Metal exposure caused a significant increase in the level of glucose in the liver and plasma (group B), while in muscles and gills, it caused a decrease in the amount of glucose (group B). Heavy metals have caused a slight decrease in total protein (gills, liver, & muscles). Seven days after exposure, the fish were split into three groups: one group was fed with vitamin C, another group with vitamin E, and the third group was fed with both vitamins (C & E). Results show that the addition of vitamins C and E as a food supplement resulted in the restitution of MDA and glucose values similar to those of the control group in all three investigated organs. But in terms of the amount of total protein, the results show that the addition of vitamins (C, E, & C+E) could not restore these values. Otherwise, in most cases, these two vitamins (C & E) administered together have shown more ameliorative effects than in the case of separate administration.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Kemajl Bislimi, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Prishtina “Hasan Prishtina”, Prishtina 10000, Kosovo

Department of biology

References

Ahmed, I., Zakiya, A. & Fazio, F. 2022. Effects of aquatic heavy metal intoxication on the level of hematocrit and hemoglobin in fishes: A review. Frontiers in Environmental Science, 10: 1-19. DOI: https://doi.org/10.3389/fenvs.2022.919204

Ajsuvakova, O.P., Tinkov, A.A., Aschner, M., Rocha, J.B.T., Michalke, B., Skalnaya, M.G., Skalny, A.V., Butnariu, M., Dadar, M., Sarac, I., Aaseth, J. & Bjørklund, G. 2020. Sulfhydryl groups as targets of mercury toxicity. Coordination Chemistry Reviews, 417: 213343 DOI: https://doi.org/10.1016/j.ccr.2020.213343

Azeez, O.I. & Braimah, S.F. 2020. Mitigating effect of vitamin-E on copper sulphate-induced toxicity in African Catfish (Clarias gariepinus). European Journal of Medical and Health Sciences, 2(4): 1-10. DOI: https://doi.org/10.24018/ejmed.2020.2.4.411

Baby, J., Raj, J.S., Biby, E.T., Sankarganesh, P., Jeevitha, M.V., Ajisha, S.U. & Rajan, Sh.S. 2010. Toxic effect of heavy metals on aquatic environment. International Journal of Biological and Chemical Sciences, 4(4): 939-952. DOI: https://doi.org/10.4314/ijbcs.v4i4.62976

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R. & Sadeghi, M. 2021. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacology, 12: 643972. DOI: https://doi.org/10.3389/fphar.2021.643972

Bartoňková, J., Hyršl, P. & Vojtek, L. 2016. Glucose determination in fish plasma by two different moderate methods. Acta Veterinaria Brno, 85: 349-353. DOI: https://doi.org/10.2754/avb201685040349

Böhm, V. 2018. Vitamin E. Antioxidants, 7(3): 44. DOI: https://doi.org/10.3390/antiox7030044

Briffa, J., Sinagra, E. & Blundell, R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9): e04691. DOI: https://doi.org/10.1016/j.heliyon.2020.e04691

Buege, J.A. & Aust, S.D. 1978. Microsomal lipid peroxidation. Methods in Enzymology, 52: 302-310. DOI: https://doi.org/10.1016/S0076-6879(78)52032-6

Campana, O., Sarasquete, C. & Blasco, J. 2003. Effect of leadon ALA-D activity, metallothionein levels, and lipidperoxidation in blood, kidney, and liver of the toadfish Halobatrachus didactylus. Ecotoxicology and Environmental Safety, 55(1): 116–125. DOI: https://doi.org/10.1016/S0147-6513(02)00093-3

Chang, J. C., Wu, S., Tseng, Y., Lee, Y., Baba, D. & Hwang, P. 2007. Regulation of glycogen metabolism in gills and liver of the euryhaline tilapia (Oreochromis mossambicus) during acclimation to seawater. Journal of Experimental Biology, 210(19): 3494–3504. DOI: https://doi.org/10.1242/jeb.007146

Dobrakowski, M., Pawlas, N., Kasperczyk, A., Kozłowska, A., Olewińska, E., Machoń-Grecka, A. & Kasperczyk, S. 2017. Oxidative DNA damage and oxidative stress in lead-exposed workers. Human & Experimental Toxicology, 36 (7): 744-754. DOI: https://doi.org/10.1177/0960327116665674

Elbeshti, R.T.A., Nuri Mohamed Elderwish, N.M., Abdelali, K.M.K. & Taştan, Y. 2018. Effects of heavy metals on fish. Menba Journal of Fisheries Faculty, 4(1): 36-47.

El-Sayed, A.F.M. & Izquierdo, M. 2021. The importance of vitamin E for farmed fish - A review. Reviews in Aquaculture, 14(2): 688-703. DOI: https://doi.org/10.1111/raq.12619

Facey, D.E., Bowen, B.W., Collette, B.B. & Helfman, G.S. 2022. The Diversity of Fishes: Biology, Evolution and Ecology. 3rd Ed. Wiley. 720 pp.

Flora, S.J.S., Flora, G. & Saxena, G. 2006. Environmental occurrence, health effects and management of lead poisoning. In: Lead Chemistry, Analytical Aspects, Environmental Impacts and Health Effects. S.B. Cascas & J. Sordo (Eds.). Elsevier, Netherlands. pp. 158-228. DOI: https://doi.org/10.1016/B978-044452945-9/50004-X

Flora, S.J.S., Mittal, M. & Mehta, A. 2008. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian Journal Medical Research, 128: 501-523.

Forman, H. J. & Zhang, H. 2021. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature reviews. Drug Discovery, 20(9): 689–709. DOI: https://doi.org/10.1038/s41573-021-00233-1

García-Rodríguez, M. del C., Gordillo-García, A. & Altamirano-Lozano, M. 2017. The Role of vitamin C in the protection and modulation of genotoxic damage induced by metals associated with oxidative stress. In: Vitamin C. A. Hamza (Ed.). Intech, London. pp. 99–112. DOI: https://doi.org/10.5772/intechopen.68686

Gheorghe, S., Stoica, C., Vasile, G.G., Lazar, M.N., Stanescu, E. & Lucaciu, I.E. 2017. Metals toxic effects in aquatic ecosystems: Modulators of water quality national. In: Water Quality. H. Tutu (Ed.). Intech, Crotia. pp. 55–89. DOI: https://doi.org/10.5772/65744

Gupta, R.S., Gupta, E.S., Dhakal, B.K., Thakur, A.R. & Ahnn, J. 2004. Vitamin C and vitamin Е protect the rat testes from cadmium-induced reactive oxygen species. Molecular Cells, 17: 132-139.

Haseeb, A., Fozia, F., Ahmad, I., Ullah, H., Iqbal, A., Ullah, R., Moharram, B.A. & Kowalczyk, A. 2022. Ecotoxicological assessment of heavy metal and its biochemical effect in fishes. Hindawi BioMed Research International, Article ID 3787838: 11. DOI: https://doi.org/10.1155/2022/3787838

Hashem, M.A., Abd El Hamied, S.S., Ahmed, E.M.A., Amer, S.A. & Hassan, A.M. 2021. Alleviating effects of vitamins C and E supplementation on oxidative stress, hematobiochemical, and histopathological alterations caused by copper toxicity in broiler chickens. Animals, 11(6): 1739. DOI: https://doi.org/10.3390/ani11061739

Hermenean, A., Damche, G., Albu, P., Ardelean, A., Ardelean, G., Ardelean, D.P., Horge, M., Nagy, T., Braun, M., Zsuga, M., Keki, S., Costache, M. & Dinischiotu, A. 2015. Histopathological alternations and oxidative stress in liver and kidney of Leuciscus cephalus following exposure to heavy metals in the Tur Rive, North Western Romania. Ecotoxicology and Environmental Safety, 119: 198-205. DOI: https://doi.org/10.1016/j.ecoenv.2015.05.029

Hideaki, S., Yasutake, A., Hirashima, T., Takamure, Y., Kitano, T., Waalkes M.P. & Imamura Y. 2008. Strain difference of cadmium accumulation by liver slices of in bred Wistar-Imamichi and Fischer 344 rats. Toxicology In Vitro, 22: 338-43. DOI: https://doi.org/10.1016/j.tiv.2007.09.013

Jacquin, L., Petitjean, Q., Côte, J., Laffaille, P. & Jean, S. 2020. Effects of pollution on fish behavior, personality, and cognition: Some research perspectives. Frontiers in Ecology and Evolution, 8: 86. DOI: https://doi.org/10.3389/fevo.2020.00086

Jan, A. T., Azam, M., Siddiqui, K., Ali, A., Choi, I. & Haq, Q. M. 2015. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Science, 16(12): 29592 – 29630. DOI: https://doi.org/10.3390/ijms161226183

Jesus, W.B., Oliveira, S.R.S., Andrade, T.S.O.M., Sousa, J.B.M., Pinheiro-Sousa, D.B., Santos, D.M.S., Cardoso, W.S.C. & Carvalho-Neta, R.N,F. 2020. Biological responses in gills and hepatopancreas of Ucides cordatus (Crustacea, Decapoda, Ocypodidae) as indicative of environmental contamination in mangrove areas in Maranhão State. Latin American Journal of Aquatic Research, 48(2): 226-236. DOI: https://doi.org/10.3856/vol48-issue2-fulltext-2374

Kalra, A., Yetiskul, E., Wehrle, C.J. & Tuma, F. 2022. Physiology, Liver. In StatPearls. Stat Pearls Publishing.

Kavitha, A.V. & Jagadescan, G. 2006. Role of Tribulus terrestris (Linn.) (Zygophyllaceae) against mercuric chloride induced nephrotoxicity in mice Mus musculus (Linn.). Journal of Environmental Biology, 27: 397-400.

Ko, H. D., Park, H.J. & Kang, J.C. 2019. Change of growth performance,hematological parameters, and plasma component by hexavalent chromium exposure in starry flounder, Platichthys stellatus. Fisheries and Aquatic Sciences 22: 9. DOI: https://doi.org/10.1186/s41240-019-0124-5

Layachi, N. & Kechrid, Z. 2012. Combined protective effect of vitamins C and E on cadmium induced oxidative liver injury in rats. African Journal of Biotechnology, 11(93): 16013-16020. DOI: https://doi.org/10.5897/AJB12.2665

Levesque, H.M., Moon, T.W., Campbell, P.G.C. & Hontela, A. 2002. Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field. Aquatic Toxicology, 60: 257-267. DOI: https://doi.org/10.1016/S0166-445X(02)00012-7

Livingstone, D.R. 2003. Oxidative stress in aquatic organism in relation to pollution and agriculture. Revue de Medicine Veterinaire, 154: 427-430.

Lowry, O., Rosebrough, N., Farr, A. & Randall, R. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Marenkov, O.M., Izhboldina, O.O., Nazarenko, M.M., Mylostyvyi, R.V., Khramkova, O.M., Kapshuk, N.O., Prychepa, M.V. & Nesterenko, O.S. 2021. Influence of heavy metals on physiological and biochemical parameters of Pseudorasbora parva (Cypriniformes, Cyprinidae). Regulatory Mechanisms in Biosystems, 12(4): 745-752. DOI: https://doi.org/10.15421/0221103

Martínez-Porchas, M., Martínez-Córdova, L.R. & Ramos-Enriquez, R. 2009. Cortisol and glucose: Reliable indicators of fish stress? Pan-American Journal of Aquatic Sciences, 4(2): 158-178

Mirmazloomi, S., Shahsavani, D. & Baghshani, H. 2015. Studies on the protective effects of ascorbic acid and thiamine on lead-induced lipid and protein oxidation as well as enzymatic alterations in some tissues of Cyprinus carpio. Comparative Clinical Pathology, 24: 1231-1236. DOI: https://doi.org/10.1007/s00580-015-2065-4

Mondal, S. & Palit, D. 2021. Prospects and implementation of nanotechnology in environmental remediation and clean up. In: Natural Resources Conservation and Advances for Sustainability. M. Jhariya, R. Meena, A. Banerjee & S. Meena (Eds.). Elsevier, Netherlands. pp. 271-282. DOI: https://doi.org/10.1016/B978-0-12-822976-7.00020-X

Mosleh, Y.Y. 2013. Role of vitamins A, C, E and selenium in preventing heavy metals toxicity in nile tilapia (Oreochromis niloticus). Journal of Applied Plant Protection, 1: 17–25. DOI: https://doi.org/10.21608/japp.2013.7720

Nanda, P. 2014. Bioaccumulation of heavy metals and physiological response in Anabas testudineus on exposure to paper mill effluent. Journal Environmental &Analitycal Toxicology, 5: 244. DOI: https://doi.org/10.4172/2161-0525.1000244

Nelson, D.L. & Cox, M. 2021. Lehninger Principles of Biochemistry. W.H. Freeman, United States. 1214 pp.

Ngo, H.T.T., Nguyen, T.D., Nguyen, T.T.H., Le, T.T.,& Nguyen, D.Q. 2022. Adverse effects of toxic metal pollution in rivers on the physiological health of fish. Toxics, 10(9): 528. DOI: https://doi.org/10.3390/toxics10090528

Özkara, A. & Akyıl, D. 2018. Environmental pollution and pollutants on the ecosystem: A review. Turkish Journal of Scientific Reviews, 11(2): 11-17.

Paris-Palacios, S., Biagannti-Risbourg, S. & Vernet, G. 2000. Biochemical and (ultra)structural hepatic perturbation of Brachydaniorerio (Teleostei, Cyprinidae) exposed to two sublethal concentration of copper sulfate. Aquatic Toxicology, 50: 109-124. DOI: https://doi.org/10.1016/S0166-445X(99)00090-9

Park, G., Yun, H., Lee, S., Taddese, F. & Sungchul, B.C. 2015. Synergistic effects of dietary vitamins C and E on methylmercury-induced toxicity in juvenile olive flounder Paralichthys olivaceus. Fisheries and Aquatic Sciences, 18(2): 143–149. DOI: https://doi.org/10.5657/FAS.2015.0143

Poli, V., Yenukolu, A., Madduru, R. & Motireddy, S.R. 2022. Protective effect of Vitamin C and E on enzymatic and antioxidant system in liver and kidney toxicity of Cadmium in rats. Applied Food Research, 2: 100098. DOI: https://doi.org/10.1016/j.afres.2022.100098

Pretto, A., Loro, V.L., Morsch, V.M., Moraes, B.S., Menezes, C., Santi, A. & Toni, C. 2014. Alterations in carbohydrate and protein metabolism in silver catfish (Rhamdia quelen) exposed to cadmium. Ecotoxicology and environmental safety, 100: 188–192. DOI: https://doi.org/10.1016/j.ecoenv.2013.11.004

Rendón-Ramírez, A.L., Maldonado-Vega, M., Quintanar-Escorza, M.A., Hernández, G., Arévalo-Rivas, B.I., Zentella-Dehesa, A. & Calderón-Salinas, J.V. 2014. Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers. Environmental Toxicology and Pharmacology, 37: 45–54. DOI: https://doi.org/10.1016/j.etap.2013.10.016

Sahiti, H., Bislimi, K., Bajgora, A., Rexhepi, A. & Dalo, E. 2018. Protective effect of vitamin C against oxidative stress in common carp (Cyprinus carpio) induced by heavy metals. International Journal of Agriculture and Bioscience, 7(2): 71-75.

Sahiti, H., Bislimi, K., Rexhepi, A. & Dalo, E. 2020. Metal accumulation and effect of vitamin c and e in accumulated heavy metals in different tissues in common carp (Cyprinus carpio) treated with heavy metals. Polish Journal of Environmental Studies, 29(1): 799-805. DOI: https://doi.org/10.15244/pjoes/103354

Santos, A.A., Ferrer, B., Gonçalves, F.M., Tsatsakis, A.M., Renieri, E.A., Skalny, A.V., Farina, M., Rocha, J.B.T. & Aschner, M. 2018. Oxidative stress in methylmercury-induced cell toxicity. Toxics, 6(3): 47. DOI: https://doi.org/10.3390/toxics6030047

Senthil, S.K., Murugan, P.K., Selvam, S., Chandhana, J.P., Babu, T.G.S. & Kandasamy, E. 2020. Fluorescence spectroscopic analysis of heavy metal induced protein denaturation. Materials Today: Proceedings. 33(5): 2328–2330. DOI: https://doi.org/10.1016/j.matpr.2020.04.693

Sevcikova, M., Modra, H., Slaninova, A. & Svobodova, Z. 2011. Metals as a cause of oxidative stress in fish-review. Veterinarni Medicina, 56: 537-546. DOI: https://doi.org/10.17221/4272-VETMED

Shah, N., Khan, A, Ali R., Marimuthu, K., Uddin, M.N., Rizwan, M., Rahman, K.U., Alam, M., Adnan, M., Muhammad, Jawad, S.M., Hussain, S. & Khisroon, M. 2020. monitoring bioaccumulation (in gills and muscle tissues), hematology, and genotoxic alteration in Ctenopharyngodon idella exposed to selected heavy metals. Biomed Research International, 2020: 6185231. DOI: https://doi.org/10.1155/2020/6185231

Shahida, S., Sultanaa, T., Sultanaa, S., Hussaina, B., Irfana, M., Al-Ghanimb, K.A., A-Misnedb, F. & Mahbooba, S. 2021. Histopathological alterations in gills, liver, kidney and muscles of Ictalurus punctatus collected from pollutes areas of River. Brazilian Journal of Biology, 81(3): 814-821. DOI: https://doi.org/10.1590/1519-6984.234266

Sigolo, S., Khazaei, R., Seidavi , A., Ayasan, T., Gallo, A. & Prandini, A. 2019. Effects of supra-nutritional levels of vitamin E and vitamin C on growth performance and blood parameters of Japanese quails. Italian Journal of Animal Science. 18: 480–487. DOI: https://doi.org/10.1080/1828051X.2018.1539628

Strzyzewska, E., Szarek, J. & Babinska, I. 2016. Morphologic evaluation of the gills as a tool in the diagnostics of pathological conditions in fish and pollution in the aquatic environment: A review. Veterinarni Medicina, 61(3): 123-132. DOI: https://doi.org/10.17221/8763-VETMED

Sugunavarman, T., Jagadeesan, G. & Samipillai, S.S. 2010. Tribulus terrestris extract protect against mercury induced oxidative tissue damage in mice. Journal of Ecobiothechnology, 2(1): 59-65.

Tamás, M.J., Sharma, S.K., Ibstedt, S, Jacobson, T., & Christen, P. 2014. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules, 4(1): 252-267. DOI: https://doi.org/10.3390/biom4010252

Tariang, Ku., Ramanujam, S.N. & Das, B. 2019. Effect of arsenic (As) and lead (Pb) on glycogen content and on the activities of selected enzymes involved in carbohydrate metabolism in freshwater catfish, Heteropneustes fossilis. International Aquatic Research, 11: 253–266. DOI: https://doi.org/10.1007/s40071-019-00234-2

Trefts, E., Gannon, M. & Wasserman, D.H. 2017. The liver. Current Biology, 27(21): 1147–1151. DOI: https://doi.org/10.1016/j.cub.2017.09.019

Ullah, S., Li, Z., Hassan, S., Ahmad, S., Guo, X., Wanghe, K. & Nabi, G. 2021. Heavy metals bioaccumulation and subsequent multiple biomarkers based appraisal of toxicity in the critically endangered Tor putitora. Ecotoxicology and Environmental Safety, 228: 113032 DOI: https://doi.org/10.1016/j.ecoenv.2021.113032

Varanka, Z., Rojik, I., Nemcsók, J. & Ábrahám, M. 2001. Biochemical and morphological changes in carp (Cyprinuscarpio L.) liver following exposure to copper sulfate and tannic acid. Comparative Biochemistry and Physiology Part C, 128(3): 467-78. DOI: https://doi.org/10.1016/S1532-0456(01)00166-1

Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A. & Timberlake, D. 2004. Sources and remediation for mercury contamination in aquatic systems – Literature review. Environmental Pollution, 131(2): 323-336. DOI: https://doi.org/10.1016/j.envpol.2004.01.010

Wolfe R.R. 2006. The underappreciated role of muscle in health and disease. The American Journal of Clinical Nutrition, 84(3): 475–482. DOI: https://doi.org/10.1093/ajcn/84.3.475

Zwolak, I. 2020. Protective Effects of dietary antioxidants against vanadium-induced toxicity: A review. Oxidative Medicine and Cellular Longevity, 2020: 1490316. DOI: https://doi.org/10.1155/2020/1490316

Published

30-06-2023

How to Cite

Sahiti, H., Bislimi, K., Rexhepi, A. ., Kovaci, Z., & Dalo, E. (2023). Antioxidant Activity of Vitamin C and E Versus Oxidative Stress Induced by Heavy Metals in Common Carp (Cyprinus carpio). Malaysian Applied Biology, 52(2), 33–40. https://doi.org/10.55230/mabjournal.v52i2.2539

Issue

Section

Research Articles