In Vitro Biological Activity of Three Marine Sponges From Theonella and Haliclona Genera Collected From Bidong Island, Terengganu, Malaysia

https://doi.org/10.55230/mabjournal.v52i2.2559

Authors

  • Nur Amira Jamaludin Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Malaysia
  • Kamariah Bakar Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Malaysia
  • Jasnizat Saidin Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Malaysia

Keywords:

antioxidant activity, antibacterial activity, biological activities, cytotoxicity

Abstract

Marine sponges are primitive sessile animals that are rich sources of biologically active compounds. This paper aimed to assess the in-vitro biological activity of marine sponges from Theonella and Haliclona genera collected from Bidong Island, Terengganu, Malaysia. Biological activities such as antibacterial (discs diffusion assay), antioxidant (DPPH free-radical scavenging assay), and cytotoxicity activity (against cancerous HeLa, MCF-7, HepG-2 cell lines and the normal cell line Vero) were evaluated using MTT cytotoxicity assay. The bioassays were done on methanol extracts at different concentrations. Results indicate that T. swinhoei, and T. cf cupola showed low antibacterial capabilities ranging from 0 to 50 mg/mL and exhibited medium antioxidant activity with the IC50 value of 23.25 ± 1.57 and 18.52 ± 0.86 mg/mL, respectively. Cytotoxicity activities indicate that both species of T. swinhoei and T. cf cupola possesses toxic capabilities to inhibit the proliferation of all cancer cell lines used and demonstrated no significant toxicity for the normal cell line used in this study. Haliclona fascigera showed medium antibacterial activity against all Gram-positive bacteria and low activity against Gram-negative bacteria used. Haliclona fascigera exhibited antioxidant activity with an IC50 value of 1.80 ± 0.08 mg/mL and outcomes of the cytotoxicity activity assay against all cancer cells showed IC50 below 30 µg/mL. Marine sponges evaluated in this study indicate promising bioactive compounds that can be an excellent candidate for drug discovery in prospecting novel antibiotics and anticancer. Despite showing low antibacterial and medium antioxidant activity, species from both Theonella can be further studied in other assays to explore other biological activities whilst marine sponge H. fascigera possesses excellent capabilities in antibacterial, antioxidant, and cytotoxicity activities that can be further studied its chemical compositions for future research.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdillah, S., Nurhayati, A.P.D., Nurhatika, S., Setiawan, E. & Heffen, W.L. 2013. Cytotoxic and antioxidant activities of marine sponge diversity at Pecaron Bay Pasir Putih Situbondo East Java, Indonesia. Journal of Pharmacy Research, 6(7): 685-689. DOI: https://doi.org/10.1016/j.jopr.2013.07.001

Aguiar, A.C.C., Parisi, J.R., Granito, R.N., de Sousa, L.R.F., Renno, A.C.M. & Gazarini, M.L. 2021. Metabolites from marine sponges and their potential to treat malarial protozoan parasites infection: A systematic review. Marine Drugs, 19(3): 134. DOI: https://doi.org/10.3390/md19030134

Alves, J., Gaspar, H., Silva, J., Alves, C., Martins, A., Teodoro, F., Susano, P., Pinteus, S. & Pedrosa, R. 2021. Unravelling the anti-inflammatory and antioxidant potential of the marine sponge Cliona celata from the Portuguese coastline. Marine Drugs, 19(11): 632 DOI: https://doi.org/10.3390/md19110632

Andriani, Y., Marlina, L., Mohamad, H., Amir, H., Radzi, S.A.M. & Saidin, J. 2017. Anti-inflammatory activity of bacteria associated with marine sponge (Haliclona amboinensis) via reducting NO production and inhibiting cyclooxygenase-1, cyclooxygenase-2, and secretary phospholipase A2 activities. Asian Journal of Pharmaceutical and Clinical Research, 10(11): 95-100. DOI: https://doi.org/10.22159/ajpcr.2017.v10i11.20094

Annuar, N.I.M. 2013. Potential anti-atherosclerotic compound from Xestospongia sp. of Bidong archipelago, Terengganu (Master of Science). Universiti Malaysia Terengganu.

Baharuddin, N. & Zakaria, N.A. 2018. The biodiversity and conservation status of the marine gastropod (Mollusca; Gastropoda) in Pulau Bidong, Terengganu, Malaysia. Aquaculture, Aquarium, Conservation & Legislation-International Journal of the Bioflux Society (AACL Bioflux), 11(4): 988-1000.

Bai, X., Liu, Y., Wang, H. & Zhang, H. 2021. Natural products from the marine sponge subgenus Reniera. Molecules, 26(4): 1097. DOI: https://doi.org/10.3390/molecules26041097

Balakrishnan, D., Bibiana, A.S., Vijayakumar, A., Santhosh, R.S., Dhevendaran, K. & Nithyanand, P. 2014. Antioxidant activity of bacteria associated with the marine sponge Tedania anhelans. Indian Journal of Microbiology, 55(1): 13-18. DOI: https://doi.org/10.1007/s12088-014-0490-8

Bary, K., Elamraoui, B. & Bamhaoud, T. 2016. Chemical characterization of Cliona viridis: Sponge of Atlantic Moroccan Coast. International Journal of Innovation and Scientific Research 26(1): 14-22.

Bashari, M.H., Huda, F., Tartila, T.S., Shabrina, S., Putri, T., Qomarilla, N., Atmaja, H., Subhan, B., Sudji, I.R. & Meiyanto, E. 2019. Bioactive compounds in the ethanol extract of marine sponge Stylissa carteri demonstrates potential anti-cancer activity in breast cancer cells. Asian Pacific Journal of Cancer Prevention, 20(4): 1199-1206. DOI: https://doi.org/10.31557/APJCP.2019.20.4.1199

Bhatnagar, I., Pallela, R., Bramhachari, P.V. & Ealla, K.K.R. 2016. Chronicles of sponge biomaterials: The saga in biomedicine. In Marine Sponges: Chemicobiological and Biomedical Applications. R. Pallela & H. Ehrlich (Eds.) Springer, India. pp. 315-327. DOI: https://doi.org/10.1007/978-81-322-2794-6_15

Chairman, K., Singh, A.J.A.R. & Alagumuthu, G. 2012. Cytotoxic and antioxidant activity of selected marine sponges. Asian Pacific Journal of Tropical Disease, 2(3): 234-238. DOI: https://doi.org/10.1016/S2222-1808(12)60053-X

Chang, S.T., Wu, J.H., Wang, S.Y., Kang, P.L., Yang, N.S. & Shyur, L.F. 2001. Antioxidant activity of extracts from Acacia confusa bark and heartwood. Journal of Agricultural Food Chemistry, 49(7): 3420-3424. DOI: https://doi.org/10.1021/jf0100907

Cheng, Z.B., Xiao, H., Fan, C.Q., Lu, Y.N., Zhang, G. & Yin, S. 2013. Bioactive polyhydroxylated sterols from the marine sponge Haliclona crassiloba. Steroids, 78(14): 1353-1358. DOI: https://doi.org/10.1016/j.steroids.2013.10.004

Cita, Y.P., Suhermanto, A., Radjasa, O.K. & Sudharmono, P. 2017. Antibacterial activity of marine bacteria isolated from sponge Xestospongia testudinaria from Sorong, Papua. Asian Pacific Journal of Tropical Biomedicine, 7(5): 450-454. DOI: https://doi.org/10.1016/j.apjtb.2017.01.024

Costello, M.J. & Chaudhary, C. 2017. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Current Biology, 27(11): 511-527. DOI: https://doi.org/10.1016/j.cub.2017.04.060

Das, R., Rauf, A., Mitra, S., Emran, T.B., Hossain, M.J., Khan, Z., Naz, S., Ahmad, B., Meyyazhagan, A., Pushparaj, K., Wan, C.C., Balasubramanian, B., Rengasamy, K.R. & Simal-Gandara, J. 2022. Therapeutic potential of marine macrolides: An overview from 1990 to 2022. Chemico-Biological Interactions, 365(1): 110072. DOI: https://doi.org/10.1016/j.cbi.2022.110072

De, A., Muthiyan, R., Mahanta, N., Nambikkairaj, B. & Immanuel, T. 2018. Antioxidant and anti-inflammatory effects of a methanol extract from the marine sponge Hyrtios erectus. Pharmacognosy Magazine, 14(58): 534-540. DOI: https://doi.org/10.4103/pm.pm_133_17

El-Damhougy, K., El-Naggar, H.A., Ibrahim, H., Bashar, M.A. & Abou-Senna, F.M. 2017. Biological activities of some marine sponge extracts from Aqaba Gulf, Red Sea, Egypt. International Journal of Fisheries and Aquatic Studies, 5(2): 652-659.

Elghobashy, K., Eldanasoury, M., Elhadary, A. & Farid, D.M. 2020. Phytochemical constituent, HPLC profiling and antioxidant activity of Passiflora incarnata and Arctium lappa leaves extracts. International Journal of Veterinary Science, 9(1): 42-49

Fukuhara, K., Takada, K., Watanabe, R., Suzuki, T., Okada, S. & Matsunaga, S. 2018. Colony-wise analysis of a Theonella swinhoei marine sponge with a yellow interior permitted the isolation of Theonellamide I. Journal Natural Product, 81(11): 2595-2599. DOI: https://doi.org/10.1021/acs.jnatprod.8b00591

Hu, Y., Chen, J., Hu, G., Yu, J., Zhu, X., Lin, Y., Chen, S. & Yuan, J. 2015. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Marine Drugs, 13(1): 202-221. DOI: https://doi.org/10.3390/md13010202

Jimenez, C. 2018. Marine natural products in medicinal chemistry. ACS Medicinal Chemistry Letters, 9(10): 959-961. DOI: https://doi.org/10.1021/acsmedchemlett.8b00368

Amit Koparde, A., Chandrashekar Doijad, R. & Shripal Magdum, C. 2019. Natural products in drug discovery. In Pharmacognosy - Medicinal Plants. S. Perveen & A. Al-Taweel (Eds.). IntechOpen. pp. 1-19. DOI: https://doi.org/10.5772/intechopen.82860

Kuo, J., Yang, Y.T., Lu, M.C., Wong, T.Y., Sung, P.J. & Huang, Y.S. 2019. Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. Annals of Microbiology, 69(3): 253-265. DOI: https://doi.org/10.1007/s13213-018-1414-3

Lai, K.H., Peng, B.R., Su, C.H., El-Shazly, M., Sun, Y.L., Shih, M.C., Huang, Y.T., Yen, P.T., Wang, L.S. & Su, J.H. 2021. Anti-proliferative potential of secondary metabolites from the marine sponge Theonella sp.: moving from correlation toward causation. Metabolites, 11(8): 532. DOI: https://doi.org/10.3390/metabo11080532

Latifah, L.A., Tahir, A. & Soekamto, N.H. 2021. Antibacterial assay of crude extracts from marine sponge Haliclona fascigera in Badi Island of Spermonde Archipelago against shrimp pathogenic bacteria. IOP Conference Series: Earth and Environmental Science, 763(1): 012029. DOI: https://doi.org/10.1088/1755-1315/763/1/012029

Lee, Y., Jang, K.H., Jeon, J.E., Yang, W.Y., Sim, C.J., Oh, K.B. & Shin, J. 2012. Cyclic Bis-1,3-dialkylpyridiniums from the sponge Haliclona sp. Marine Drugs, 10(9): 2126-2137. DOI: https://doi.org/10.3390/md10092126

Mahavorasirikul, W., Viyanant, V., Chaijaroenkul, W., Itharat, A. & Na-Bangchang, K. 2010. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. BMC Complementary and Alternative Medicine, 10(1): 55. DOI: https://doi.org/10.1186/1472-6882-10-55

Malve, H. 2016. Exploring the ocean for new drug developments: Marine pharmacology. Journal of Pharmacy and Bioallied Sciences, 8(2): 83-91. DOI: https://doi.org/10.4103/0975-7406.171700

Mohamad, H., Najmiah, W., Jamil, W., Abas, F., Mohamad, K. & Ali, A. 2009. Octacosanoic acid, long chains saturated fatty acid from the marine sponges Xestospongia sp. Pertanika Journal of Tropical Agricultural Science, 32(1): 51-55.

Mohamad, H., Mat Rashid, Z., Shaari, K., Latip, J., Lajis, M.N.H. & Ali, A. 2009. Antibacterial and DPPH free radical-scavenging activities of methanolic extracts of Aaptos sp. (marine sponges). Pertanika Journal of Tropical Agricultural Science, 32(1): 43-50.

Muhammad Sulaiman, Z., Subehan, L., Masteria Yunovilsa, P., Tri Aryono, H. & Ibrahim, J. 2018. Antibacterial and cytotoxic activities of sponges collected off the Coast of Togean Islands, Indonesia. Pharmacognosy Journal, 10(4): 988-992. DOI: https://doi.org/10.5530/pj.2018.5.168

Nazemi, M., Alidoust Salimi, M., Alidoust Salimi, P., Motallebi, A., Tamadoni Jahromi, S. & Ahmadzadeh, O. 2014. Antifungal and antibacterial activity of Haliclona sp. from the Persian Gulf, Iran. Journal de Mycologie Médicale, 24(3): 220-224. DOI: https://doi.org/10.1016/j.mycmed.2014.03.005

Oogarah, P., Ramanjooloo, A., Rovisham, J., Doorga, J., Meyepa, C., Wilhelmus, R., Soest, M. & Marie, P. 2020. Assessing antioxidant activity and phenolic content of marine sponges from Mauritius waters. International Journal of Pharmacognosy and Phytochemical Research, 12(3): 123-131.

Petersen, L.E., Kellermann, M.Y. & Schupp, P.J. 2020. Secondary metabolites of marine microbes: From natural products chemistry to chemical ecology. YOUMARES, 9(1): 159-180. DOI: https://doi.org/10.1007/978-3-030-20389-4_8

Qaralleh, H., Idid, S., Saad, S., Susanti, D., Taher, M. & Khleifat, K. 2010. Antifungal and antibacterial activities of four Malaysian sponge species (Petrosiidae). Journal de Mycologie Médicale, 20(4): 315-320. DOI: https://doi.org/10.1016/j.mycmed.2010.10.002

Seradj, H., Moein, M., Eskandari, M. & Maaref, F. 2012. Antioxidant activity of six marine sponges collected from the Persian Gulf. Iranian Journal of Pharmaceutical Sciences, 8(4): 249-255.

Sugappriya, M. & Sudarsanam, D. 2016. Free radical screening activity of marine sponge Aurora globostellata. Asian Journal of Pharmaceutical and Clinical Research, 9(4): 210-212.

Varijakzhan, D., Loh, J.Y., Yap, W.S., Yusoff, K., Seboussi, R., Lim, S.E., Lai, K.S. & Chong, C.M. 2021. Bioactive compounds from marine sponges: Fundamentals and applications. Marine Drugs, 19(5): 246. DOI: https://doi.org/10.3390/md19050246

Vijayarathna, S. & Sasidharan, S. 2012. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. Asian Pacific Journal of Tropical Biomedicine, 2(10): 826-829. DOI: https://doi.org/10.1016/S2221-1691(12)60237-8

Yamazaki, H., Wewengkang, D.S., Kanno, S., Ishikawa, M., Rotinsulu, H., Mangindaan, R.E., & Namikoshi, M. 2013. Papuamine and haliclonadiamine, obtained from an Indonesian sponge Haliclona sp., inhibited cell proliferation of human cancer cell lines. Natural Product Research, 27(11): 1012-1015. DOI: https://doi.org/10.1080/14786419.2012.688050

Zaporozhets, T.S. & Besednova, N.N. 2020. Biologically active compounds from marine organisms in the strategies for combating coronaviruses. AIMS Microbiology, 6(4): 470-494. DOI: https://doi.org/10.3934/microbiol.2020028

Published

30-06-2023

How to Cite

Jamaludin, N. A., Bakar, K. ., & Saidin, J. . (2023). In Vitro Biological Activity of Three Marine Sponges From Theonella and Haliclona Genera Collected From Bidong Island, Terengganu, Malaysia. Malaysian Applied Biology, 52(2), 51–59. https://doi.org/10.55230/mabjournal.v52i2.2559

Issue

Section

Research Articles

Funding data