Screening and Identification of Potential Indigenous Yeasts Isolated During Fermentation of Wine Coffee


  • Anggeta Bella Siez Kanita Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Veteran Street, Malang, East Java 65145, Indonesia
  • Yoga Dwi Jatmiko Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Veteran Street, Malang, East Java 65145, Indonesia


ITS rDNA, probiotics, Pichia kudriavzevii, wine coffee, yeast


Wine coffee is a fermented coffee product that involves yeast as the fermentative agent which has potency as probiotics. This study aimed to determine the potency of yeast isolated from wine coffee fermentation and to identify the yeast species with the best probiotic properties. This study comprised three main steps: coffee fermentation, yeast isolation, and probiotic characterization. A series of probiotic tests were carried out, including resistance tests at low pH (pH 2, 3, & 4) and bile salts (0.5% & 2%), antimicrobial activity tests, antibiotic resistance tests, hemolytic activity tests, and species identification based on the ITS rDNA sequence. The data obtained were analyzed using One-way ANOVA (p≤0.05) and continued with the Tukey test. A total of 25 yeast isolates were isolated and purified. Nine isolates (A2, B1, B3, C3, D4, D5, E2, E3 & E5) had the highest tolerance to pH 2 and 2% bile salts with survival rates were more than 100% and 90%, respectively. Nine isolates were resistant to all tested antibiotics, and only isolate A2 exhibited a pathogenic characteristic (β-hemolysis). Three isolates (B3, E3 & E5) could inhibit the five indicator pathogens, with the highest inhibitory activity shown by isolating E3 against Bacillus cereus by 68 AU/mL. The isolate E3 was selected as the best yeast with probiotic properties identified as Pichia kudriavzevii with 100% similarities towards strain iwate20191107.


Download data is not yet available.


Metrics Loading ...


Abid, R., Waseem, H., Ali J., Ghazanfar, S., Ali, G.M., Elasbali, A.M. & Alharethi, S.H. 2022. Probiotic yeast Saccharomyces: Back to nature to improve human health. Journal of Fungi, 8(5): 444. DOI:

Alkalbani, N.S., Osaili, T.M., Al-Nabulsi, A.A., Olaimat, A.N., Liu, S.Q., Shah, N.P., Apostolopoulos, V. & Ayyash, M.M. 2022. Assessment of yeasts as potential probiotics: A review of gastrointestinal tract conditions and investigation methods. Journal of Fungi, 8(4): 365. DOI:

Azhar, M.A. & Munaim, M.S.A. 2019. Identification and evaluation of probiotic potential in yeast strains found in kefir drink samples from Malaysia. International Journal of Food Engineering, 15(7): 20180347. DOI:

Banwo, K., Alonge, Z. & Sanni, A.I. 2021. Binding capacities and antioxidant activities of Lactobacillus plantarum and Pichia kudriavzevii against cadmium and lead toxicities. Biological Trace Element Research, 199(2): 779–791. DOI:

Chang, C.F., Huang, L.Y., Chen, S.F., & Lee, C.F. 2012. Kloeckera taiwanica sp. nov., an ascomycetous apiculate yeast species isolated from mushroom fruiting bodies. International Journal of Systematic and Evolutionary Microbiology, 62: 1434-1437. DOI:

Chelliah, R., Ramakrishnan, S.R., Prabhu, P.R. & Antony, U. 2016. Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter. Yeast, 33(8): 385–401. DOI:

Fakruddin, M., Hossain, M.N. & Ahmed, M.M. 2017. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complement Alternative Medicine, 17(1): 64. DOI:

Fijan, S. 2016. Antimicrobial effect of probiotics against common pathogens. In: V. Rao and L.G. Rao (Eds.). Probiotics and Prebiotics in Human Nutrition and Health. Intech Open Science, London. pp. 191-221. DOI:

Frieri, M., Kumar, K. & Boutin, A. 2017. Antibiotic resistance. Journal of Infection and Public Health, 10(4): 369–378. DOI:

Gueimonde, M., Sánchez, B., de los Reyes-Gavilán, C.G. & Margolles, A. 2013. Antibiotic resistance in probiotic bacteria. Frontiers in Microbiology, 4 : 202. DOI:

Hanna, M. & Noor, A. 2022. Streptococcus group B. StatPearls Publishing, London.

Hatoum, R., Labrie, S. & Fliss, I. 2012. Antimicrobial and probiotic properties of yeasts: From fundamental to novel applications. Frontiers in Microbiology, 3: 421. DOI:

Helmy, E.A., Soliman, S.A., Abdel-Ghany, T.M. & Ganash, M. 2019. Evaluation of potentially probiotic attributes of certain dairy yeast isolated from buffalo sweetened Karish cheese. Heliyon, 5(5): e01649. DOI:

Hu, X.Q., Liu, Q., Hu, J.P., Zhou, J.J., Zhang, X., Peng, S.Y., Peng, L.J. & Wang, X.D. 2018. Identification and characterization of probiotic yeast isolated from digestive tract of ducks. Poultry Science, 97(8): 2902–2908. DOI:

Jatmiko, Y.D., Lopes, M.D.B. & Barton, M.D. 2012. Molecular identification of yeast isolated from dadih by RFLP-PCR and assessment on their ability in utilizing lactate. Microbiology Indonesia, 6(1): 30-34. DOI:

Kim, J.A., Bayo, J., Cha, J., Choi, Y.J., Jung, M.Y., Kim, D.H. & Kim, Y. 2019. Investigating the probiotic characteristics of four microbial strains with potential application in feed industry. PLoS ONE, 14(6): e0218922. DOI:

Knop, M. 2011. Yeast cell morphology and sexual reproduction - A short overview and some considerations. Comptes Rendus - Biologies, 334(8–9): 599–606. DOI:

Kothari, D., Patel, S. & Kim, S.K. 2019. Probiotic supplements might not be universally-effective and safe: A review. Biomedicine and Pharmacotherapy, 111: 537–547. DOI:

Lara-Hidalgo, C.E., Hernández-Sánchez, H., Hernández-Rodríguez, C. & Dorantes-Álvarez, L. 2017. Yeasts in fermented foods and their probiotic potential. Austin Journal of Nutrition and Metabolism, 4(4): 1045.

Lennars, W.J. & Lane, M.D. 2013. Encyclopedia of biological chemistry. 2nd Ed. Academic Press, San Diego.

Lucena, R.M., Dolz-Edo, L., Brul, S., de Morais Jr, M.A. & Smits, G. 2020. Extreme low cytosolic ph is a signal for cell survival in acid stressed yeast. Genes, 11(6): 656. DOI:

Lucena, R.M., Elsztein, C., Pita, W.D.B., de Souza, R.F., Júnior, S.D.S.L.P. & Junior, M.A.D.M. 2015.Transcriptomic response of Saccharomyces cerevisiae for its adaptation to sulphuric acid-induced stress. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 108(5): 1147–1160. DOI:

McFarland, L.V. 2010. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World Journal of Gastroenterology, 16(18): 2202–2222. DOI:

Moradi, R., Nosrati, R., Zare, H., Tahmasebi, T., Saderi, H. & Owlia, P. 2018. Screening and characterization of in-vitro probiotic criteria of Saccharomyces and Kluyveromyces strains. Iranian Journal of Microbiology, 10(2): 123–131.

Moreira, I.M.D.V, Miguel, M.G.D.C.P, Duarte, W.F, Dias, D.R. & Schwan, R.F. 2013. Microbial succession and the dynamics of metabolites and sugars during the fermentation of three different cocoa (Theobroma cacao L.) hybrids. Food Research International, 54(1): 9–17. DOI:

Moslehi-Jenabian, S., Pedersen, L. & Jespersen, L. 2010. Beneficial effects of probiotic and food borne yeasts on human health. Nutrients, 2(4): 449–473. DOI:

Muccilli, S. & Restuccia, C. 2015. Bioprotective role of yeasts. Microorganisms, 3(4): 588–611. DOI:

Mukti, R.F., Chowdhury, M.M.K., & Uddin, M.A. 2019. Isolation and characterization of osmophilic fermentative yeasts from Bangladeshi honeys. Journal of Advanced Biotechnology and Experimental Therapeutics, 2(3): 127-133. DOI:

National Center for Biotechnology Information. no date. Pichia kudriavzevii iwate20191107 genes for SSU rRNA, ITS1, 5.8S rRNA, ITS2, LSU rRNA, partial and complete sequence. URL (accessed 7.28.22).

Ogunremi, O.R., Agrawal, R. & Sanni, A.I. 2015. Development of cereal-based functional food using cereal-mix substrate fermented with probiotic strain - Pichia kudriavzevii OG32. Food Science and Nutrition, 3(6): 486-494. DOI:

Pereira, G.V.D.M., Soccol, V.T., Pandey, A., Medeiros, A.B.P, Lara, J.M.R.A, Gollo, A.L. & Soccol, C.R. 2014. Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 188: 60–66. DOI:

Pereira, G.V.D.M., Coelho, B.D.O., Júnior, A.I.M., Soccol, V.T. & Soccol, C.R. 2018. How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8): 2060–2076. DOI:

Ragavan, M.L. & Das, N. 2017. Molecular identification of probiotic yeast strains and their characterization. Asian Journal of Pharmaceutical and Clinical Research, 10(10): 339–343. DOI:

Rodríguez, P.F.-P., Arévalo-Villena, M., Rosa, I.Z. & Pérez, A.B. 2018. Selection of potential non-Saccharomyces probiotic yeasts from food origin by a step-by-step approach. Food Research International, 112: 143–151. DOI:

Ruiz, L., Margolles, A. & Sánchez, B. 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology, 4: 396. DOI:

Seftiono, H. 2017. Penentuan aktivitas enzim mananase dari berbagai mikroorganisme di Indonesia dan peranannya dalam bidang pangan: Kajian pustaka (Determination of the activity of the mananase enzyme from various microorganisms in Indonesia and its role in the food sector: Literature review). Agrointek, 11(1): 14-20. DOI:

Siddiquee, S., Yusuf, U.K. & Zainudin, N.A.I.M. 2010. Morphological and molecular detection of Fusarium chlamydosporum from root endophytes of Dendroblum crumenatum. African Journal of Biotechnology, 9(26): 4081-4090.

Shankar, S.R., Sneha, H.P., Prakash, I., Khan, M., Punil, K.H.N., Om, H., Basavaraj, K. & Murthy, P.S. 2022. Microbial ecology and functional coffee fermentation dynamics with Pichia kudriavzevii. Food Microbiology, 105: 104012. DOI:

Staniszewski, A. & Kordowska-Wiater, M. 2021. Probiotic and potentially probiotic yeasts—characteristics and food application. Foods, 10(6): 1306. DOI:

Sulaiman, I., Erfiza, N.M. & Moulana, R. 2021. Effect of fermentation media on the quality of arabica wine coffee. IOP Conf Series: Earth and Environmental Science, 709(1): 012027. DOI:

Sulmiyati, F., Said, N.S., Fahrodi, D.U., Malaka, R. & Maruddin, F. 2019. The characteristics yeast isolated from commercial kefir grain. Hasanuddin Journal of Animal Science, 1(1): 26–37. DOI:

Syal, P. & Vohra, A. 2013. Probiotic potential of yeasts isolated from traditional indian fermented foods. International Journal of Microbiology Research, 5(2): 390–398. DOI:

Tomičić, Z.M., Čolović, R.R., Čabarkapa, I.S., Vukmirović, D.M., Đuragić, O.M. & Tomičić, R.M. 2016. Beneficial properties of probiotic yeast Saccharomyces boulardii. Food and Feed Research, 43(2): 103–110. DOI:

Ullah, A., Chandrasekaran, G., Brul, S. & Smits, G.J. 2013. Yeast adaptation to weak acids prevents futile energy expenditure. Frontiers in Microbiology, 4: 142. DOI:

Villar-García, J., Hernández, J.J., Güerri-Fernández, R., Gonzáles, A., Lerma, E., Guelar, A., Saenz, D., Sorli, L., Montero, M., Horcajada, J.P. & Freud, H.K. 2015. Effect of probiotics (Saccharomyces boulardii) on microbial translocation and inflammation in HIV-treated patients: A double-blind, randomized, placebo-controlled trial. Journal of Acquired Immune Deficiency Syndromes, 68(3): 256–263. DOI:

Vulin, C., Meglio, J.M.D., Lindner, A.B., Daerr, A., Murray, A. & Hersen, P. 2014. Growing yeast into cylindrical colonies. Biophysical Journal, 106(10): 2214–2221. DOI:

Willaert, R.G. 2017. Yeast biotechnology. Fermentation, 3(1): 6-8. DOI:

Wulan, R., Astuti, R.I., Rukayadi, Y. & Meryandini, A. 2021. Evaluation of indigenous Pichia kudriavzevii from cocoa fermentation for a probiotic candidate. Biodiversitas, 22(3): 1317–1325. DOI:

Yulianti, S.E. & Astuti, D.I. 2021. Fermentation of tofu using consortium of lactic acid bacteria isolated from tofu whey as biocoagulant and bioperservation. Annales Bogorienses, 25(1): 15-27.

Zakhartsev, M. & Reuss, M. 2018. Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature. FEMS Yeast Research, 18(6): foy052. DOI:



How to Cite

Kanita, A. B. S., & Jatmiko, Y. D. (2023). Screening and Identification of Potential Indigenous Yeasts Isolated During Fermentation of Wine Coffee. Malaysian Applied Biology, 52(3), 1–11.



Research Articles