This is an outdated version published on 03-04-2023. Read the most recent version.

miR-99a-5p and miR-148a-3p as Candidate Molecular Biomarkers for the Survival of Lung Cancer Patients

https://doi.org/10.55230/mabjournal.v52i1.2608

Authors

  • Muhammad-Redha Abdullah-Zawawi 1. UKM Medical Molecular Biology Institute, UKM Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia
  • Mira-Farzana Mohamad-Mokhtar UKM Medical Molecular Biology Institute, UKM Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia
  • Saiful Effendi Syafruddin UKM Medical Molecular Biology Institute, UKM Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia
  • Fateen Farhana Ibrahim UKM Medical Molecular Biology Institute, UKM Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia
  • Isa Mohamed Rose Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia
  • Roslan Harun KPJ Ampang Puteri, No. 1, Jalan Mamanda 9, Taman Dato Ahmad Razali, 68000 Ampang, Selangor, Malaysia
  • Nor Azian Abdul Murad UKM Medical Molecular Biology Institute, UKM Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia

Keywords:

Bioinformatics, lung cancer, microRNA, molecular biomarker, prognostication

Abstract

MicroRNA (miRNA) has emerged as a promising biomarker for improving the current state of an early lung cancer diagnosis. Multiple studies have reported that circulating miRNAs are usually combined in a single panel in determining the risk of lung cancer. In this study, we sought to identify the potential miRNAs as biomarkers for the survival of lung cancer patients. The microarray analysis was performed on the isolated miRNA samples of formalin-fixed lung cancer tissues from Malaysian populations. The correlation between miRNA expression and lung adenocarcinoma (LUAD) patient survival was predicted using TGGA data, followed by extensive in silico analyses, including miRNA target gene identification, protein-protein interaction (PPI) network construction, subnetwork (SN) detection, functional enrichment analysis, gene-disease associations, and survival analysis in advanced-stage LUAD. Overall, two promising miR-99a-5pand miR-148a-3p were upregulated in the patients with good survival. We found that 64 miR-99a-5p and 95 miR-148a-3ptarget genes were associated with poor prognosis and highly participated in cancer-associated processes, such as apoptosis, mRNA transport and cell-cell adhesion. The density score of 4.667, 3.333, and 3.000 in respective SN1, SN2, and SN3 showed the significant subnetworks of constructed PPI leading to the identification of 17 targets, of which ~79% of them involved in neoplastic diseases. Four high-confidence target genes (SUDS3, TOMM22, KPNA4, and HMGB1) were associated with worse overall survival in LUAD patients, implying their critical roles in LUAD pathogenesis. These findings shed additional light on the roles of miR-99a-5p and miR-148a-3p as potential biomarkers for LUAD survival.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ab Manan, A., Basri, H., Kaur, N., Abd Rahman, S.Z., Amir, P.N., Ali, N., Raman, S., Bahtiar, B., Mustafa Ramdzuan, N.S., Syed Soffian, S.S., Othman, R., Othman, N.A. & Abdul Aziz, A. 2019. Malaysian National Cancer Registry Report 2012-2016, Publication Number 5. Ministry of Health, Putrajaya.

Amorim, I.S., Lach, G. & Gkogkas, C.G. 2018. The role of the eukaryotic translation initiation factor 4E (eIF4E) in Neuropsychiatric Disorders. Frontiers in Genetics, 9: 561. DOI: https://doi.org/10.3389/fgene.2018.00561

Anaya, J. 2016. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science, 2: e67. DOI: https://doi.org/10.7717/peerj-cs.67

Assenov, Y., Ramírez, F., Schelhorn, S.E., Lengauer, T. & Albrecht, M. 2008. Computing topological parameters of biological networks. Bioinformatics, 24(2): 282-284. DOI: https://doi.org/10.1093/bioinformatics/btm554

Bader, G.D. & Hogue, C.W. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4: 2. DOI: https://doi.org/10.1186/1471-2105-4-2

Bartel, D.P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2): 281-297. DOI: https://doi.org/10.1016/S0092-8674(04)00045-5

Bracken, C.P., Scott, H.S. & Goodall, G.J. 2016. A network-biology perspective of microRNA function and dysfunction in cancer. Nature Reviews Genetics, 17(12): 719-732. DOI: https://doi.org/10.1038/nrg.2016.134

Doncheva, N.T., Morris, J.H., Gorodkin, J. & Jensen, L.J. 2019. Cytoscape StringApp: Network analysis and visualization of proteomics data. Journal of Proteome Research, 18(2): 623-632. DOI: https://doi.org/10.1021/acs.jproteome.8b00702

Du, W., Zhu, J., Zeng, Y., Liu, T., Zhang, Y., Cai, T., Fu, Y., Zhang, W., Zhang, R., Liu, Z. & Huang, J. 2021. KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death & Differentiation, 28(4): 1284-1300. DOI: https://doi.org/10.1038/s41418-020-00651-5

Dweep, H., Gretz, N. & Sticht, C. 2014. miRWalk database for miRNA-Target interactions. Methods in Molecular Biology, 1182: 289-305. DOI: https://doi.org/10.1007/978-1-4939-1062-5_25

Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D.M., Piñeros, M., Znaor, A. & Bray, F. 2019. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144(8): 1941-1953. DOI: https://doi.org/10.1002/ijc.31937

Garofalo, M. & Croce, C.M. 2011. microRNAs: Master regulators as potential therapeutics in cancer. Annual Review of Pharmacology and Toxicology, 51: 25-43. DOI: https://doi.org/10.1146/annurev-pharmtox-010510-100517

Gene Ontology Consortium. 2015. Gene Ontology Consortium: Going forward. Nucleic Acids Research, 43(Database issue): D1049-D1056. DOI: https://doi.org/10.1093/nar/gku1179

Han, Y. 2019. Analysis of the role of the Hippo pathway in cancer. Journal of Translational Medicine, 17(1): 116. DOI: https://doi.org/10.1186/s12967-019-1869-4

He, Y., Huang, C., Cai, K., Liu, P., Chen, X., Xu, Y.I., Ming, Z., Liu, Q., Xie, Q., Xia, X., Sun, Y., Luo, J. & Wei, R. 2021. PRPF19 promotes tongue cancer growth and chemoradiotherapy resistance. Acta Biochimica et Biophysica Sinica, 53(7): 893-902. DOI: https://doi.org/10.1093/abbs/gmab059

Hu, K. & Chen, F. 2012. Identification of significant pathways in gastric cancer based on protein-protein interaction networks and cluster analysis. Genetics and Molecular Biology, 35(3): 701-708. DOI: https://doi.org/10.1590/S1415-47572012005000045

Hu, R.H., Zhang, Z.T., Wei, H.X., Ning, L., Ai, J.S., Li, W.H., Zhang, H. & Wang, S.Q. 2020. LncRNA ST7-AS1, by regulating miR-181b-5p/KPNA4 axis, promotes the malignancy of lung adenocarcinoma. Cancer Cell International, 20(1): 568. DOI: https://doi.org/10.1186/s12935-020-01652-7

Huang, D.W., Sherman, B.T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M. W., Lane, H.C. & Lempicki, R.A. 2007. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Research, 35(Web Server Issue): W169-W175. DOI: https://doi.org/10.1093/nar/gkm415

Iorio, M.V. & Croce, C.M. 2009. MicroRNAs in cancer: small molecules with a huge impact. Journal of Clinical Oncology, 27(34): 5848-5856. DOI: https://doi.org/10.1200/JCO.2009.24.0317

Jiang, Y., DiVittore, N., Young, M.M., Jia, Z., Xie, K., Ritty, T.M., Kester, M. & Fox, T.E. 2013. Altered sphingolipid metabolism in patients with metastatic pancreatic cancer. Biomolecules, 3(3): 435-448. DOI: https://doi.org/10.3390/biom3030435

Kan, C.S. & Chan, K.M. 2016. A review of lung cancer research in malaysia. Medical Journal of Malaysia, 71(Suppl 1): 70-78.

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1): D457-D462. DOI: https://doi.org/10.1093/nar/gkv1070

Leonardi, L., Sibéril, S., Alifano, M., Cremer, I. & Joubert, P.E. 2021. Autophagy Modulation by Viral Infections Influences Tumor Development. Frontiers in Oncology, 11: 743780. DOI: https://doi.org/10.3389/fonc.2021.743780

Li, P., Fei, H., Wang, L., Xu, H., Zhang, H. & Zheng, L. 2017. PDCD5 regulates cell proliferation, cell cycle progression and apoptosi. Oncology Letters, 15(1): 1177-1183. DOI: https://doi.org/10.3892/ol.2017.7401

Liu, Y., Kim, J. & Qu, F. 2020. Recent Advances in Lung Cancer Diagnosis and Therapy. Journal of Hematology/Oncology, 13(1): 163.

Lu, L., Liu, Q., Wang, P., Wu, Y., Liu, X., Weng, C., Fang, X., Li, B., Cao, X., Mao, H., Wang, L., Guan, M., Wang, W. & Liu, G. 2019. MicroRNA-148b regulates tumor growth of non-small cell lung cancer through targeting MAPK/JNK pathway. BMC Cancer, 19(1): 209. DOI: https://doi.org/10.1186/s12885-019-5400-3

Lu, Y., Lemon, W., Liu, P.Y., Yi, Y., Morrison, C., Yang, P., Sun, Z., Szoke, J., Gerald, W.L., Watson, M., Govindan, R. & You, M. 2006. A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Medicine, 3(12): e467. DOI: https://doi.org/10.1371/journal.pmed.0030467

Luo, T., Wu, S., Shen, X. & Li, L. 2013. Network cluster analysis of protein-protein interaction network identified biomarker for early onset colorectal cancer. Molecular Biology Reports, 40(12): 6561-6568. DOI: https://doi.org/10.1007/s11033-013-2694-0

MacFarlane, L.A. & Murphy, P.R. 2010. MicroRNA: Biogenesis, function and role in cancer. Current Genomics, 11(7): 537-561. DOI: https://doi.org/10.2174/138920210793175895

Mansoori, B., Mohammadi, A., Ditzel, H.J., Duijf, P.H.G., Khaze, V., Gjerstorff, M.F. & Baradaran, B. 2021. HMGA2 as a critical regulator in cancer development. Genes, 12(2): 269. DOI: https://doi.org/10.3390/genes12020269

Müller, S., Bley, N., Glaß, M., Busch, B., Rousseau, V., Misiak, D., Fuchs, T., Lederer, M. & Hüttelmaier, S. 2018. IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors. Nucleic Acids Research, 46(12): 6285-6303. DOI: https://doi.org/10.1093/nar/gky229

Nogueira, A., Catarino, R., Coelho, A., Araújo, A., Gomes, M. & Medeiros, R. 2010. Influence of DNA repair RAD51 gene variants in overall survival of non-small cell lung cancer patients treated with first line chemotherapy. Cancer Chemotherapy and Pharmacology, 66(3): 501-506. DOI: https://doi.org/10.1007/s00280-009-1187-2

Noorbakhsh, N., Hayatmoghadam, B., Jamali, M., Golmohammadi, M. & Kavianpour, M. 2021. The Hippo signaling pathway in leukemia: function, interaction, and carcinogenesis. Cancer Cell International, 21(1): 705. DOI: https://doi.org/10.1186/s12935-021-02408-7

Ogretmen, B. 2018. Sphingolipid metabolism in cancer signalling and therapy. Nature Reviews Cancer, 18(1): 33-50. DOI: https://doi.org/10.1038/nrc.2017.96

Othman, N. & Nagoor, N.H. 2014. The role of microRNAs in the regulation of apoptosis in lung cancer and its application in cancer treatment. BioMed Research International, 2014, 318030. DOI: https://doi.org/10.1155/2014/318030

Piñero, J., Ramírez-Anguita, J.M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz, F. & Furlong, L.I. 2019. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Research, 48(D1): D845-D855. DOI: https://doi.org/10.1093/nar/gkz1021

Piñero, J., Saüch, J., Sanz, F. & Furlong, L.I. 2021. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Computational and Structural Biotechnology Journal, 19: 2960-2967. DOI: https://doi.org/10.1016/j.csbj.2021.05.015

Rajadurai, P., Cheah, P.L., How, S.H., Liam, C.K., Annuar, M.A.A., Omar, N., Othman, N., Marzuki, N.M., Pang, Y.K., Bustamam, R.S.A. & Tho, L.M. 2019. Molecular testing for advanced non-small cell lung cancer in Malaysia: Consensus statement from the College of Pathologists, Academy of Medicine Malaysia, the Malaysian Thoracic Society, and the Malaysian Oncological Society. Lung Cancer, 136: 65-73. DOI: https://doi.org/10.1016/j.lungcan.2019.08.005

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. & Ideker, T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498-2504. DOI: https://doi.org/10.1101/gr.1239303

Shi, Z., Wu, D., Tang, R., Li, X., Chen, R., Xue, S., Zhang, C. & Sun, X. 2016. Silencing of HMGA2 promotes apoptosis and inhibits migration and invasion of prostate cancer cells. Journal of Biosciences, 41(2): 229-236. DOI: https://doi.org/10.1007/s12038-016-9603-3

Siegel, R.L., Miller, K.D., Fuchs, H.E. & Jemal, A. 2021. Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1): 7-33. DOI: https://doi.org/10.3322/caac.21654

Song, P., Yang, F., Jin, H. & Wang, X. 2021. The regulation of protein translation and its implications for cancer. Signal Transduction and Targeted Therapy, 6(1): 68. DOI: https://doi.org/10.1038/s41392-020-00444-9

Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., Jensen, L.J. & Mering, C.V. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1): D607-D613. DOI: https://doi.org/10.1093/nar/gky1131

Tanaka, I., Sato, M., Kato, T., Goto, D., Kakumu, T., Miyazawa, A., Yogo, N., Hase, T., Morise, M., Sekido, Y., Girard, L., Minna, J.D., Byers, L.A., Heymach, J.V., Coombes, K.R., Kondo, M. & Hasegawa, Y. 2018. eIF2β, a subunit of translation-initiation factor EIF2, is a potential therapeutic target for non-small cell lung cancer. Cancer Science, 109(6): 1843-1852. DOI: https://doi.org/10.1111/cas.13602

Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. 2019. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1): W556-W560. DOI: https://doi.org/10.1093/nar/gkz430

Tomczak, K., Czerwińska, P. & Wiznerowicz, M. 2015. Review The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Współczesna Onkologia, 19(1A): A68-A77. DOI: https://doi.org/10.5114/wo.2014.47136

Travis, W.D., Brambilla, E., Burke, A.P., Marx, A. & Nicholson, A.G. 2015. Introduction to the 2015 World Health Organization Classification of tumors of the lung, pleura, thymus, and heart. Journal of Thoracic Oncology, 10(9): 1240-1242. DOI: https://doi.org/10.1097/JTO.0000000000000663

Truitt, M.L., Conn, C.S., Shi, Z., Pang, X., Tokuyasu, T., Coady, A.M., Seo, Y., Barna, M. & Ruggero, D. 2015. Differential requirements for eIF4E dose in normal development and cancer. Cell, 162(1): 59-71. DOI: https://doi.org/10.1016/j.cell.2015.05.049

Tsai, T.F., Lin, J.F., Chou, K.Y., Lin, Y.C., Chen, H.E. & Hwang, T.I.S. 2018. miR-99a-5p acts as tumor suppressor via targeting to mTOR and enhances RAD001-induced apoptosis in human urinary bladder urothelial carcinoma cells. OncoTargets and Therapy, 11: 239-252. DOI: https://doi.org/10.2147/OTT.S114276

Vargas, A., Rojas, J., Aivasovsky, I., Vergara, S., Castellanos, M., Prieto, C. & Celis, L. 2020. Progressive early-onset leukodystrophy related to biallelic variants in the KARS Gene: The first case described in Latin America. Genes (Basel), 11(12): 1437. DOI: https://doi.org/10.3390/genes11121437

Wang, Y., Ding, W., Chen, C., Niu, Z., Pan, M. & Zhang, H. 2015. Roles of Hippo signaling in lung cancer. Indian Journal of Cancer, 52(Suppl 1): e1-e5. DOI: https://doi.org/10.4103/0019-509X.168949

Wei, C., Wang, Y. & Li, X. 2018. The role of Hippo signal pathway in breast cancer metastasis. OncoTargets and Therapy, 11: 2185-2193. DOI: https://doi.org/10.2147/OTT.S157058

Wu, Y., Aegerter, P., Nipper, M., Ramjit, L., Liu, J. & Wang, P. 2021. Hippo signaling pathway in pancreas development. Frontiers in Cell and Developmental Biology, 9: 663906. DOI: https://doi.org/10.3389/fcell.2021.663906

Xie, Q., Yu, Z., Lu, Y., Fan, J., Ni, Y. & Ma, L. 2019. microRNA‐148a‐3p inhibited the proliferation and epithelial-mesenchymal transition progression of non‐small‐cell lung cancer via modulating Ras/MAPK/Erk signaling. Journal of Cellular Physiology, 234(8): 12786-12799. DOI: https://doi.org/10.1002/jcp.27899

Yang, C.L., Zheng, X.L., Ye, K., Ge, H., Sun, Y.N., Lu, Y.F. & Fan, Q.X. 2018. MicroRNA-183 Acts as a Tumor Suppressor in Human Non-Small Cell Lung Cancer by Down-Regulating MTA1. Cellular Physiology and Biochemistry, 46(1): 93-106. DOI: https://doi.org/10.1159/000488412

Yin, H., He, H., Cao, X., Shen, X., Han, S., Cui, C., Zhao, J., Wei, Y., Chen, Y., Xia, L., Wang, Y., Li, D. & Zhu, Q. 2020. MiR-148a-3p Regulates Skeletal Muscle Satellite Cell Differentiation and Apoptosis via the PI3K/AKT Signaling Pathway by Targeting Meox2. Frontiers in Genetics, 11: 512. DOI: https://doi.org/10.3389/fgene.2020.00512

Zhou, H., Liu, J., Zhang, Y., Huang, Y. & Zhang, L. 2019. Autoimmune diseases and lung cancer: A Mendelian randomization study. Journal of Thoracic Oncology, 14(8): e161-e163. DOI: https://doi.org/10.1016/j.jtho.2019.03.019

Zhu, S., Wang, J.Z., Chen, D., He, Y.T., Meng, N., Chen, M., Lu, R.X., Chen, X.H., Zhang, X.L. & Yan, G.R. 2020. An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis. Nature Communications, 11(1): 1685. DOI: https://doi.org/10.1038/s41467-020-15403-9

Published

03-04-2023

Versions

How to Cite

Abdullah-Zawawi, M.-R., Mohamad-Mokhtar, M.-F., Syafruddin, S. E., Ibrahim, F. F., Mohamed Rose, I., Harun, R., & Abdul Murad, N. A. (2023). miR-99a-5p and miR-148a-3p as Candidate Molecular Biomarkers for the Survival of Lung Cancer Patients. Malaysian Applied Biology, 52(1), 87–100. https://doi.org/10.55230/mabjournal.v52i1.2608

Issue

Section

Research Articles