Productivity of Lembah Palu Local Shallot (Allium cepa L. var. Aggregatum) from Organic Cultivation


  • Iskandar Lapanjang Agrotechnology Department, Faculty of Agriculture, Tadulako University, Palu, 94118,
  • Amirudin Agrotechnology Department, Faculty of Agriculture, University of Bossowa, 90231, Indonesia


Bokashi, morphology, mycorrhiza, productivity, shallots, tubers


The local shallot variety of ‘Lembah Palu’ (Allium cepa L. var. Aggregatum) is a typical fried shallot plant in Palu City, Indonesia, and is a cooking spice or flavoring for various foods. The main objective of this research was to increase the productivity of the Palu local shallot of ‘Lembah Palu’ grown on liquefaction soils. This research was conducted from November 2019 to January 2020, in Kaleke Village, West Dolo Subdistrict, Sigi Regency, Central Sulawesi, Indonesia. This research used a Randomized Block Design with two factors. The first factor of Arbuscular Mycorrhiza Fungi (AMF) consisted of M0 (Control), M1 (10 g/polybag), M2 (15 g/polybag), and M3 (20 g/polybag). The second factor of bokashi fertilizer consisted of B0 (Control), B1 (312.5 g/polybag), and B2 (375 g/polybag). Each experimental unit consisted of 3 polybags and was grouped into 3 groups so that the total experimental unit was 108 plants or polybags. The results showed that the application of mycorrhiza 20 g/polybag and bokashi 375 g/polybag was able to produce the optimal number of tubers, the wet and dry weight of shallot tubers. Likewise, for the growth of Palu local shallot plants, the higher dose of mycorrhiza and bokashi resulted in better plant growth, i.e., plant height, number of leaves, and number of tillers.


Download data is not yet available.


Metrics Loading ...


Bárzana, G., Aroca, R., Paz, J.A., Chaumont, F., Martinez-Ballesta, M.C., Carvajal, M. & Ruiz-Lozano, J.M. 2012. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Annals of Botany, 109: 1009–1017. DOI:

Baweja, P., Kumar, S. & Kumar, G. 2020. Fertilizers and pesticides: Their impact on soil health and environment. In Soil Biology. B. Giri & A. Varma (Eds.). Springer, Cham. DOI:

Begum, N., Qin, Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N. & Zhang, L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10: 68. DOI:

Caravaca, F., Figueroa, D., Roldán, A. & Azcón-Aguilar, C. 2003. Alteration in rhizosphere soil properties of afforested Rhamnus lycioides seedlings in short-term response to mycorrhizal inoculation with Glomus intraradices and organic amendment. Environmental Management, 31(3): 412–420. DOI:

Dhiman, M., Sharma, L., Kaushik, P., Singh, A. & Sharma, M.M. 2022. Mycorrhiza: An ecofriendly biotool for better survival of plants in nature. Sustainability, 14(16): 10220. DOI:

El-sherbeny, T.M.S., Mousa, A.M. & El-sayed, E.R. 2022. Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion (Allium cepa L.) plant. Saudi Journal of Biological Sciences, 29(1): 331–338. DOI:

Fajeriana, N., Ali, A., Sangadji, Z. & Setyawati, A. 2022. Application of cow manure bokashi fertilizer to nutrients of top soil oxisol planting media with the growth and yield of red spinach (Amaranthus tricolor L .). Journal of the Austrian Society of Agricultural Economics, 18(03): 909–915.

Foo, E., Ross, J.J., Jones, W.T. & Reid, J.B. 2013. Plant hormones in arbuscular mycorrhizal symbioses: An emerging role for gibberellins. Annals of Botany, 111: 769–779. DOI:

Gashua, A.G., Sulaiman, Z., Yusoff, M.M., Samad, M.Y.A., Ramlan, M.F. & Salisu, M.A. 2022. Assessment of fertilizer quality in horse waste based bokashi fertilizer formulations. Agronomy, 12(4): 937. DOI:

Husen, M.A., Sugiyarto, S. & Novianto, E.D. 2022. The Effect of bokashi and rabbit urine addition on the tubber of shallots (Allium ascalonicum L.). Proceedings of the 7th International Conference on Biological Science (ICBS 2021), 22: 581–584. DOI:

Jantamenchai, M., Sukitprapanon, T.S., Tulaphitak, D., Mekboonsonglarp, W. & Vityakon, P. 2022. Organic phosphorus forms in a tropical sandy soil after application of organic residues of different quality. Geoderma, 405: 115462. DOI:

Jeandet, P., Clément, C., Courot, E. & Cordelier, S. 2013. Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. International Journal of Molecular Sciences, 14(7): 14136. DOI:

Jia, C., Subash, H., Hanna, M.N.A.U., Zulhaimi, I., Nor, M., Kasim, F.H., Radi, A. & Yaakub, W. 2020. Mycorrhiza : A natural resource assists plant growth under varied soil conditions. 3 Biotech, 10: 204. DOI:

Karimuna, L., Rahni, N.M. & Boer, D. 2016. The use of bokashi to enhance agricultural productivity of marginal soils in Southeast Sulawesi, Indonesia. Journal of Tropical Crop Science, 3(1): 1–6. DOI:

Khaliq, A., Perveen, S., Alamer, K.H., Zia, M., Haq, U., Rafique, Z., Alsudays, I.M., Althobaiti, A.T., Saleh, M.A., Hussain, S. & Attia, H. 2022. Arbuscular mycorrhizal fungi symbiosis to enhance plant – soil interaction. Sustainability, 14(13): 7840. DOI:

Khan, S; Cao, Q., Zheng, Y.M., Huang, Y.Z. & Zhu, Y.G. 2008. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3): 686–692. DOI:

Lasmini, S.A., Nasir, B., Hayati, N. & Edy, N. 2018. Improvement of soil quality using bokashi composting and NPK fertilizer to increase shallot yield on dry land. Australian Journal of Crop Science, 12(11): 1743–1749. DOI:

Lori, M., Symnaczik, S., Ma, P., Deyn, G.D. & Gattinger, A. 2017. Organic farming enhances soil microbial abundance and activity — A meta-analysis and meta-regression. PLoS ONE, 12(7): e0180442. DOI:

Luo, Y., Gonzalez Lopez, J.B., van Veelen, H.P.J., Sechi, V., ter Heijne, A., Bezemer, T.M. & Buisman, C.J.N. 2022. Bacterial and fungal co occurrence patterns in agricultural soils amended with compost and bokashi. Soil Biology and Biochemistry, 174: 108831. DOI:

Mukherjee, A., Gaurav, A.K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S. & Verma, J.P. 2022. The bioactive potential of phytohormones: A review. Biotechnology Reports, 35: e00748. DOI:

Muliana, Hartono, A., Anwar, S., Susila, A.D. & Sabiham, S. 2018. Harvesting of residual soil phosphorus on intensive shallot farming in brebes, indonesia. Agrivita, 40(3): 515–526. DOI:

Ortiz, A. & Sansinenea, E. 2022. The role of beneficial microorganisms in soil quality and plant health. Sustainability, 14(9): 5358. DOI:

Pan, I., Dam, B. & Sen, S.K. 2012. Composting of common organic wastes using microbial inoculants. 3 Biotech, 2(2):127–134. DOI:

Purwaningsih, H., Widyayanti, S., Arianti, F. D., Pertiwi, D., Triastono, J., Praptana, R.H., Malik, A., Cempaka, I.G., Yufdy, M.P., Anda, M. & Wihardjaka, A. 2022. Nutrient management of shallot farming in sandy loam soil in Tegalrejo , Gunungkidul, Indonesia. Sustainability, 14(19): 11862. DOI:

Rich, M.K., Schorderet, M. & Reinhardt, D. 2014. The role of the cell wall compartment in mutualistic symbioses of plants. Fronties in Plant Science, 5: 238. DOI:

Saha, J.K., Sharma, A.K. & Srivastava A. 2014. Impact of different types of polluted irrigation water on soil fertility and wheat grain yield in clayey black soils of central India. Environmental Monitoring and Assessments, 186(4): 2349-2356. DOI:

Saleh, S., Anshary, A., Made, U. & Basir-cyio, M. 2021. Application of mycorrhizae and beauveria in organic farming system effectively control leafminers and enhance shallot production. AGRIVITA Journal of Agricultural Science, 43(1): 79–88. DOI:

Samanhudi, S., Maret, U.S., Yunus, A. & Lestariana, D.S. 2017. The effect of arbuscular mycorrhiza and organic manure on soybean growth and nutrient content in Indonesia. Bulgarian Journal of Agricultural Science, 23(4): 596–603.

Sharma, A., Sharma, R., Arora, A., Shah, R., Singh, A., Pranaw, K. & Nain, L. 2014. Insights into rapid composting of paddy straw augmented with efficient microorganism consortium. International Journal of Recycling of Organic Waste in Agriculture, 3(2): 54. DOI:

Sihvonen, M., Pihlainen, S., Lai, T., Salo, T. & Hyyti, K. 2021. Crop production, water pollution, or climate change mitigation Which drives socially optimal fertilization management most?. Agricultural Systems, 186: 102985. DOI:

Shin, K., van Diepen, G., Blok, W. & van Bruggen, A.H.C. 2017. Variability of effective micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens. Crop Protection, 99: 168–176. DOI:

Xiaohou, S., Min, T., Ping, J., & Weiling, C. 2008. Effect of EM Bokashi application on control of secondary soil salinization. Water Science and Engineering, 1(4): 99–106.

Yu, W., Ding, X., Xue, S., Li, S., Liao, X. & Wang, R. 2013. Effects of organic-matter application on phosphorus adsorption of three soil parent materials. Journal of Soil Science and Plant Nutrition, 13(4): 1003–1017. DOI:

Yu, J. & Wu, J. 2018. The sustainability of agricultural development in China: The Agriculture– Environment Nexus. Sustainability, 10: 1776. DOI:



How to Cite

Lapanjang, I., & Amirudin. (2023). Productivity of Lembah Palu Local Shallot (Allium cepa L. var. Aggregatum) from Organic Cultivation. Malaysian Applied Biology, 52(3), 49–58.



Research Articles