The Potential of Mucor irregularis Isolated From Fruits in Producing Microbial Lipid

https://doi.org/10.55230/mabjournal.v53i1.2747

Authors

Keywords:

Mucorales, oleaginous, biodiesel, lipid, identification

Abstract

In this present study, potential oleaginous Mucorales fungi that have been isolated from fruits from local markets in Sleman, Indonesia, were screened for lipid production. A total of six fungal cultures were isolated and screened using a semisynthetic medium with glucose as a carbon source and a limited nitrogen supply. The highest lipid content was observed in isolate JR 1.1, up to 43.46% and 3.28 g/L lipid yield. Therefore, it was selected for molecular identification and fatty acid analysis. The result showed that JR 1.1 was identified as Mucor irregularis. The fatty acid profile of JR 1.1 showed 16.89% palmitoleic acid, 4.85% oleic acid, 45.22% linolenic acid, 30.79% gamma-linolenic acid, and 2.25% other fatty acids. It can be concluded that M. irregularis JR 1.1 is a potential strain to be used as a lipid producer for biodiesel feedstock. Further studies are recommended to optimize lipid productivity and improve fatty acid composition.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aldina, R.F., Indarti, S., Wibowo, A., 2017. Pathogenicity of Nematofagous Fungus for Control of Pratylenchus coffeae Nematodes on Coffee Plants, In: Proceeding of the 1st International Conference on Tropical Agriculture. A. Isnansetyo and T.R. Nuringtyas (Eds.). Springer International Publishing, Cham, pp. 243-251. DOI: https://doi.org/10.1007/978-3-319-60363-6_23

Athenaki, M., Gardeli, C., Diamantopoulou, P., Tchakouteu, S.S., Sarris, D., Philippoussis, A. & Papanikolaou, S. 2018. Lipids from yeasts and fungi: Physiology, production and analytical considerations. Journal of Applied Microbiology, 124: 336-367. DOI: https://doi.org/10.1111/jam.13633

Bhanja, A., Minde, G., Magdum, S. & Kalyanraman, V. 2014. Comparative studies of oleaginous fungal strains (Mucor circinelloides and Trichoderma reesei) for effective wastewater treatment and bio-oil production. Biotechnology Research International, 2014: 479370. DOI: https://doi.org/10.1155/2014/479370

Chatzifragkou, A., Makri, A., Belka, A., Bellou, S., Mavrou, M., Mastoridou, M., Mystrioti, P., Onjaro, G., Aggelis, G. & Papanikolaou, S. 2011. Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy, 36: 1097-1108. DOI: https://doi.org/10.1016/j.energy.2010.11.040

Chi, Z., Zheng, Y., Ma, J. & Chen, S. 2011. Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production. International Journal of Hydrogen Energy, 36(16): 9542-9550. DOI: https://doi.org/10.1016/j.ijhydene.2011.04.124

Chiu, H.-H. & Kuo, C.-H. 2020. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. Journal of Food and Drug Analysis, 28(1): 60-73. DOI: https://doi.org/10.1016/j.jfda.2019.10.003

Fisk, H.L., West, A.L., Childs, C.E., Burdge, G.C. & Calder, P.C. 2014. The use of gas chromatography to analyze compositional changes of fatty acids in rat liver tissue during pregnancy. Journal of Visualized Experiments, 85: e51445. DOI: https://doi.org/10.3791/51445-v

Garg, N., Garg, K.L. & Mukerji, K.G. 2010. Laboratory Manual of Food Microbiology. I. K. International Pvt Ltd, New Delhi.

Gultom, S. & Hu, B. 2013. Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies, 6: 5921-5939. DOI: https://doi.org/10.3390/en6115921

Hoffmann, K., Pawłowska, J., Walther, G., Wrzosek, M., de Hoog, G.S., Benny, G.L., Kirk, P.M. & Voigt, K. 2013. The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia, 30: 57-76. DOI: https://doi.org/10.3767/003158513X666259

Huang, G., Zhou, H., Tang, Z., Liu, H., Cao, Yi, Qiao, D., Cao, Yu, 2016. Novel fungal lipids for the production of biodiesel resources by Mucor fragilis AFT7-4. Environmental Progress and Sustainable Energy, 35: 1784-1792. DOI: https://doi.org/10.1002/ep.12395

Jangbua, P., Laoteng, K., Kitsubun, P., Nopharatana, M. & Tongta, A. 2009. Gamma-linolenic acid production of Mucor rouxii by solid-state fermentation using agricultural by-products. Letters in Applied Microbiology, 49: 91-97. DOI: https://doi.org/10.1111/j.1472-765X.2009.02624.x

Kamoun, O., Ayadi, I., Guerfali, M., Belghith, H., Gargouri, A. & Trigui-Lahiani, H. 2018. Fusarium verticillioides as a single-cell oil source for biodiesel production and dietary supplements. Process Safety and Environmental Protection, 118: 68-78. DOI: https://doi.org/10.1016/j.psep.2018.06.027

Khot, M., Kamat, S., Zinjarde, S., Pant, A., Chopade, B. & Ravikumar, A. 2012. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microbial Cell Factories, 11: 71. DOI: https://doi.org/10.1186/1475-2859-11-71

Ma, T. & Zuazaga, G. 1942. Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method. Industrial and Engineering Chemistry, Analytical Edition, 14: 280-282. DOI: https://doi.org/10.1021/i560103a035

Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31: 426-428. DOI: https://doi.org/10.1021/ac60147a030

Mudrončeková, S., Mazáň, M., Nemčovič, M. & Šalamon, I. 2013. Entomopathogenic fungus species Beauveria bassiana (Bals.) and Metarhizium anisopliae (Metsch.) used as mycoinsecticide effective in biological control of Ips typographus (L.). Journal of Microbiology, Biotechnology and Food Sciences, 2: 2469-2472.

Patel, A., Karageorgou, D., Rova, E., Katapodis, P., Rova, U., Christakopoulos, P. & Matsakas, L. 2020. An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms, 8(3): 434. DOI: https://doi.org/10.3390/microorganisms8030434

Pinzi, S., Rounce, P., Herreros, J.M., Tsolakis, A. & Pilar Dorado, M. 2013. The effect of biodiesel fatty acid composition on combustion and diesel engine exhaust emissions. Fuel, 104: 170-182. DOI: https://doi.org/10.1016/j.fuel.2012.08.056

Qiao, W., Tao, J., Luo, Y., Tang, T., Miao, J. & Yang, Q. 2018. Microbial oil production from solid-state fermentation by a newly isolated oleaginous fungus, Mucor circinelloides Q531 from mulberry branches. Royal Society Open Science, 5: 180551. DOI: https://doi.org/10.1098/rsos.180551

Romanelli, A.M., Fu, J., Herrera, M.L. & Wickes, B.L. 2014. A universal DNA extraction and PCR amplification method for fungal rDNA sequence-based identification. Mycoses, 57: 612-622. DOI: https://doi.org/10.1111/myc.12208

Schütz, G., Haltrich, D. & Atanasova, L. 2020. Influence of spore morphology on spectrophotometric quantification of Trichoderma inocula. BioTechniques, 68: 279-282. DOI: https://doi.org/10.2144/btn-2019-0152

Somashekar, D., Venkateshwaran, G., Sambaiah, K. & Lokesh, B.R. 2003. Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochemistry, 38(12): 1719-1724. DOI: https://doi.org/10.1016/S0032-9592(02)00258-3

Triasih, U., Agustina, D., Agustina, D., Dwiastuti, M.E., Dwiastuti, M.E., Wuryantini, S., Wuryantini, S., 2019. Test of various carrier materials against viability and conidia density in some liquid biopesticides of entomopathogenic fungi. Jurnal Agronida, 5(1): 12-20. DOI: https://doi.org/10.30997/jag.v5i1.1851

Xia, C., Wei, W. & Hu, B. 2014. Statistical analysis and modeling of pelletized cultivation of Mucor circinelloides for microbial lipid accumulation. Applied Biochemistry and Biotechnology, 172: 3502-3512. DOI: https://doi.org/10.1007/s12010-014-0759-8

Published

31-03-2024

How to Cite

Haura, A., & Ilmi, M. (2024). The Potential of Mucor irregularis Isolated From Fruits in Producing Microbial Lipid. Malaysian Applied Biology, 53(1), 19–26. https://doi.org/10.55230/mabjournal.v53i1.2747

Issue

Section

Research Articles

Funding data