Phytochemical Evaluation and Anti-angiogenic Activity of Alingatong (Dendrocnide meyeniana Walp.) Root Extracts Using the Chorioallantoic Membrane Assay on Duck Embryo
Keywords:
medicinal plants, cytotoxic, bioactive compounds, Dendrocnide meyeniana, alingatong, LC50Abstract
Dendrocnide meyeniana (Walp.), known as "Alingatong" in the Visayas region of the Philippines, is a plant from the Urticaceae family. It is commonly found in the mountain areas of Taiwan and the Philippines. This study aims to determine the Dendrocnide meyeniana root extract's anti-angiogenic activity. The methanolic extracts of Dendrocnide meyeniana were subjected to preliminary phytochemical screening. Cytotoxicity test using Brine Shrimp Lethality Assay was conducted with different plant concentrations to determine the concentration to use for the anti-angiogenic activity of the root extracts. The anti-angiogenic activity was observed by calculating blood vessel percent inhibition using chorioallantoic membrane assay or CAM assay. Phytochemical screening reveals that the plant contains varying levels of detection of bioactive compounds, including saponins, flavonoids, alkaloids, and steroids. Brine Shrimp Lethality Assay showed that the ethyl acetate and hexane extracts from Dendrocnide meyeniana were highly toxic as their LC50 values were lower than 100 ppm. CAM assay results showed that hexane with 250 ppm concentration has the highest percent inhibition with 34.98% followed by hexane at 125 ppm with 34.07% inhibition. Both concentrations of ethyl acetate showed low percentage inhibition, where 250 ppm was at 19.05% and 125 ppm at 15.93%. One-way ANOVA indicates that the different treatments have significant differences (p-value< 0.0001) in the number of branches present using the CAM assay. Therefore, based on the results, Dendrocnide meyeniana root extracts have anti-angiogenic properties and these findings will help to understand the efficacy of the traditional medicine used by the local people.
Downloads
Metrics
References
Ali, A.I., Paul, V., Chattree, A., Prasad, R., Paul, A. & Amiteye, D. 2021. Evaluation of the use of different solvents for phytochemical constituents and antioxidant activity of the leaves of Murraya koenigii (Linn.) Spreng. (Rutaceae). Plant Archives 21(1): 985-992. DOI: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.137
Belayneh, Y.M., Birhanu, Z., Birru, E.M. & Getenet, G. 2019. Evaluation of in vivo antidiabetic, antidyslipidemic, and in vitro antioxidant activities of hydromethanolic root extract of Datura stramonium L. (Solanaceae). Journal of Experimental Pharmacology, 2019(11): 29-38. DOI: https://doi.org/10.2147/JEP.S192264
Carmeliet, P. & Jain, R. 2000. Angiogenesis in cancer and other diseases. Nature, 407: 249-257. DOI: https://doi.org/10.1038/35025220
Caunca, E.S. & Balinado, L.O. 2021. The practice of using medicinal plants by local herbalists in Cavite, Philippines. Indian Journal of Traditional Knowledge, 20(2): 335-343. DOI: https://doi.org/10.56042/ijtk.v20i2.26862
Clarkson, C., Maharaj, V.J., Crouch, N.R., Grace, O.M., Pillay, P., Matsabisa, M.G., Bhagwandin, N., Smith, P.J., Folb, P.I. 2004. In vitro antiplasmodial activity of medicinal plants native to or naturalized in South Africa. Journal of Ethnopharmacology, 92: 177–191. DOI: https://doi.org/10.1016/j.jep.2004.02.011
Claustra, A.L., Madulid, R.S., Aguinaldo, A.M., Espeso, E.I., Guevara, B.Q., Nonato, M.G., Quinto, E.A., Santos, M.A.G., Bernas, G.D., del Castillo-Solevil, R.C. & Ysrael, M.C. 2005. A guidebook to plant screening: Phytochemical and biological. University of Santo Tomas Publishing House, Espana, Manila.
Fauziah, F., Maulinasari, M., Harnelly, E., Ismail, Y.S. & Fitri, L. 2022. Toxicity test of rose periwinkle (Catharanthus roseus) leaves endophytic bacteria using Brine Shrimp Lethality Test (BSLT) method. Biodiversitas Journal of Biological Diversity, 23(1). DOI: https://doi.org/10.13057/biodiv/d230122
Gunardi, W.D., Sudradjat, S.E. & Timotius, K.H. 2023. Healing capacities of nettles: Dendrocnide, Girardinia, Laportea, and Urtica. Phytomedicine Plus, 3: 100538. DOI: https://doi.org/10.1016/j.phyplu.2023.100438
Hamidi, M.R., Jovanova, B. & Panovska, T.K. 2014. Toxicological evaluation of the plant products using Brine Shrimp (Artemia salina L.) model. Macedonian Pharmaceutical Bulletin, 60(1). DOI: https://doi.org/10.33320/maced.pharm.bull.2014.60.01.002
Kargozar, S., Baino, F., Hamzehlou, S., Hamblin, M.R. & Mozafari, M. 2020. Nanotechnology for angiogenesis: Opportunities and challenges. Chemical Society Reviews journal, 49(14): 5008-5057. DOI: https://doi.org/10.1039/C8CS01021H
Khan, M.I., Karima, G., Khan, M.Z., Shin, J.H. & Kim, J.D. 2022. Therapeutic effects of saponins for the prevention and treatment of cancer by ameliorating inflammation and angiogenesis and inducing antioxidant and apoptotic effects in human cells. International Journal of Molecular Sciences, 23(18): 10665. DOI: https://doi.org/10.3390/ijms231810665
Lokman, N.A., Ricciardelli, C. & Oehler, M.K. 2020. Chick chorioallantoic membrane assay: A 3D animal model for cancer. In: Animal Biotechnology. A.S. Verma and A. Singh (Eds.). Academic Press. pp. 221-231. DOI: https://doi.org/10.1016/B978-0-12-811710-1.00031-8
Lu, K. Bhat, M. & Basu, S. 2016. Plants and their active compounds: natural molecules to target angiogenesis. Angiogenesis, 19(3): 287–295. DOI: https://doi.org/10.1007/s10456-016-9512-y
Majnooni, M.B., Fakhri, S., Ghanadian, S.M., Bahrami, G., Mansouri, K., Iranpanah, A., Farzaeu, M.H. & Mojarrab, M. 2023. Inhibiting angiogenesis by anti-cancer saponins: From phytochemistry to cellular signaling pathways. Metabolites, 13(3): 323. DOI: https://doi.org/10.3390/metabo13030323
Osbourn, A., Goss, R.J. & Field, R.A. 2011. The saponins-polar isoprenoids with important and diverse biological activities. Natural Product Reports, 28(7): 1261-1268. DOI: https://doi.org/10.1039/c1np00015b
Ramakrishna, W., Kumari, A., Rahman, N. & Mandave, P. 2021. Anticancer activities of plant secondary metabolites: Rice callus suspension culture as a new paradigm. Rice Science, 28(1): 13-30. DOI: https://doi.org/10.1016/j.rsci.2020.11.004
Ribatti, D. 2016. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mechanisms of development, 141: 70-77. DOI: https://doi.org/10.1016/j.mod.2016.05.003
Ribatti, D., Nico, B., Vacca, A. & Presta, M. 2006. The gelatin sponge-chorioallantoic membrane assay. Nature Protocols, 1(1): 85-91. DOI: https://doi.org/10.1038/nprot.2006.13
Ribatti, D., Vacca, A., Roncali, L. & Dammacco, F. 2000. The chick embryo chorioallantoic membrane as a model for in vivo research on anti-angiogenesis. Current Pharmaceutical Biotechnology, 1(1): 73-82. DOI: https://doi.org/10.2174/1389201003379040
Roa, Q.I., Cantín, M., Vilos, C., Rosas, C. & Lemus, D. 2017. Angiogenesis and tumor progression inhibition of Cyclooxygenase-2 selective inhibitor celecoxib associated with poly (lactic-co-glycolic acid) in tumor cell line resistant to chemotherapy. International Journal Morphology, 35(2): 733-739. DOI: https://doi.org/10.4067/S0717-95022017000200055
Rosas, C., Sinning, M., Ferreira, A. Fuenzalida, M. & Lemus, D. 2014. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy. Biological Research 47: 27. DOI: https://doi.org/10.1186/0717-6287-47-27
Salmerón-Manzano, E., Garrido-Cardenas, J.A. & Manzano-Agugliaro, F. 2020. Worldwide research trends on medicinal plants. International journal of environmental research and public health, 17(10): 3376. DOI: https://doi.org/10.3390/ijerph17103376
Sangweni, N.F., Dludla, P.V., Chellan, N., Mabasa, L., Sharma, J.R. & Johnson, R. 2021. The implication of low dose dimethyl sulfoxide on mitochondrial function and oxidative damage in cultured cardiac and cancer cells. Molecules, 26(23): 7305. DOI: https://doi.org/10.3390/molecules26237305
Stuart, G.U. 2021. Philippine alternative medicine. URL http://www.stuartxchange.org (accessed 06.13.2023)
Supraja, N., Prasad, T., Gandhi, A.D., Anbumani, D., Kavitha, P. & Babujanarthanam, R. 2018. Synthesis, characterization, and evaluation of anti-microbial efficacy and brine shrimp lethality assay of Alstonia scholaris stem bark extract mediated ZnONPs. Biochemistry and Biophysics Reports, 14: 69-77. DOI: https://doi.org/10.1016/j.bbrep.2018.04.004
Waghulde, S., Kale, M.K. & Patil, V. 2019. Brine shrimp lethality assay of the aqueous and ethanolic extracts of the selected species of medicinal plants. Proceedings, 41(1): 47. DOI: https://doi.org/10.3390/ecsoc-23-06703
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Iligan Institute of Technology, Mindanao State University
Grant numbers SO#00148-2022