An in silico Approach For Identification of Potential Therapeutic Targets For Cancer Treatment From Celastrus hindsii Benth

https://doi.org/10.55230/mabjournal.v53i1.2807

Authors

  • Thanh Loan Pham Institute of Applied Research and Development, Hung Vuong University, Phu Tho province, 290000, Vietnam
  • Van Huy Nguyen Institute of Applied Research and Development, Hung Vuong University, Phu Tho province, 290000, Vietnam

Keywords:

Bioinformatics, Celastrus hindsii, In silico approach, Medicinal plant, Therapeutic targets

Abstract

Celastrus hindsii Benth., a medicinal plant celebrated for its traditionally medicinal and practically therapeutic properties, has been used for generations in Vietnam to support the treatment of ulcers, tumors, and inflammation. The difference between several phenotypes, primarily identified as Broad Leaf (BL) and Narrow Leaf (NL), has been clarified by convincing scientific evidence through our previous proteomics study, which also revealed several bioactive proteins and peptides. Therefore, based on the findings, this study further investigated their therapeutic properties using a bioinformatics tool (BLASTP) and analyzing literature data. The results showed the distinguished variations in protein profile between the NL and BL proteomes and revealed five significant proteins with therapeutic properties. Of these, three proteins can have anti-tumor and anti-inflammatory activity and have been proven effective in cancer treatment. Therefore, C. hindsii, particularly the BL phenotype with elevated levels of therapeutic proteins, could be a promising plant candidate for future intensive research and applications for cancer treatment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bento, J.F., Noleto, G.R. & De Oliveira Petkowicz, C.L. 2014. Isolation of an arabinogalactan from Endopleura uchi bark decoction and its effect on HeLa cells. Carbohydrate Polymers, 101(1): 871–877. DOI: https://doi.org/10.1016/j.carbpol.2013.10.014

Blanco, M.A., Alečković, M., Hua, Y., Li, T., Wei, Y., Xu, Z., Cristea, I. M. & Kang, Y. 2011. Identification of staphylococcal nuclease domain-containing 1 (SND1) as a metadherin-interacting protein with metastasis-promoting functions. Journal of Biological Chemistry, 286(22): 19982–19992. DOI: https://doi.org/10.1074/jbc.M111.240077

Cheng, J., Guo, J., North, B.J., Tao, K., Zhou, P. & Wei, W. 2019. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1871(1): 138–159. DOI: https://doi.org/10.1016/j.bbcan.2018.11.007

Chen, S.L., Yu, H., Luo, H.M., Wu, Q., Li, C.F. & Steinmetz, A. 2016. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine, 11(37): 1–10. DOI: https://doi.org/10.1186/s13020-016-0108-7

Chin, A.R., Fong, M.Y., Somlo, G., Wu, J., Swiderski, P., Wu, X. & Wang, S.E. 2016. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Research, 26(2): 217-228. DOI: https://doi.org/10.1038/cr.2016.13

Cid-Gallegos, M.S., Corzo-Ríos, L.J., Jiménez-Martínez, C. & Sánchez-Chino, X.M. 2022. Protease inhibitors from plants as therapeutic agents- A Review. Plant Foods for Human Nutrition, 77(1): 20–29. DOI: https://doi.org/10.1007/s11130-022-00949-4

Cijo, V., Dellaire, G. & Rupasinghe, H.P.V. 2017. Plant flavonoids in cancer chemoprevention: role in genome stability. The Journal of Nutritional Biochemistry, 45: 1–14. DOI: https://doi.org/10.1016/j.jnutbio.2016.11.007

Cui, D., Xiong, X. & Zhao, Y. 2016. Cullin-RING ligases in regulation of autophagy. Cell Division, 11: 1-8. DOI: https://doi.org/10.1186/s13008-016-0022-5

De Filippis, L. & Magel, E. 2012. Identification of biochemical differences between the sapwood and transition zone in Robinia pseudoacacia L. by differential display of proteins. 66(4): 543–549. DOI: https://doi.org/10.1515/hf.2011.178

Fukudome, A. & Fukuhara, T. 2017. Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. Journal of Plant Research, 130(1): 33–44. DOI: https://doi.org/10.1007/s10265-016-0877-1

Gutierrez-Beltran, E., Denisenko, T.V., Zhivotovsky, B. & Bozhkov, P.V. 2016. Tudor staphylococcal nuclease: Biochemistry and functions. Cell Death and Differentiation, 23(11): 1739–1748. DOI: https://doi.org/10.1038/cdd.2016.93

Hu, X.Q., Han, W., Han, Z.Z., Liu, Q.X., Xu, X.K., Fu, P. & Li, H.L. 2014. A new macrocyclic lactone and a new quinoflavan from Celastrus hindsii. Phytochemistry Letters, 7: 169-172. DOI: https://doi.org/10.1016/j.phytol.2013.11.015

Iravani, S. & Varma, R.S. 2019. Plant-derived edible nanoparticles and miRNAs: Emerging frontier for therapeutics and targeted drug-delivery. ACS Sustainable Chemistry & Engineering, 7(9): 8055–8069. DOI: https://doi.org/10.1021/acssuschemeng.9b00954

Jang, S.M., Redon, C.E. & Aladjem, M.I. 2018. Chromatin-bound cullin-ring ligases: Regulatory roles in DNA replication and potential targeting for cancer therapy. Frontiers in Molecular Biosciences, 5(19). DOI: https://doi.org/10.3389/fmolb.2018.00019

Kerzendorfer, C., Hart, L., Colnaghi, R., Carpenter, G., Alcantara, D., Outwin, E., Carr, A.M. & O’Driscoll, M. 2011. CUL4B-deficiency in humans: Understanding the clinical consequences of impaired Cullin 4-RING E3 ubiquitin ligase function. Mechanisms of Ageing and Development, 132(8–9): 366–373. DOI: https://doi.org/10.1016/j.mad.2011.02.003

Kuo, Y.-H., Chen, C.F. & Kuo, L.M.Y. 1995. Celahinine a, a new sesquiterpene pyridine alkaloid from Celastrus hindsii. Journal of Natural Products, 58(11): 1735–1738. DOI: https://doi.org/10.1021/np50125a015

Lafarga, T., Acién-Fernández, F.G. & Garcia-Vaquero, M. 2020. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Research, 48: 101909. DOI: https://doi.org/10.1016/j.algal.2020.101909

Li, C.L., Yang, W.Z., Shi, Z. & Yuan, H.S. 2018. Tudor staphylococcal nuclease is a structure-specific ribonuclease that degrades RNA at unstructured regions during microRNA decay. RNA, 24:739-748. DOI: https://doi.org/10.1261/rna.064501.117

Ly, T.N., Shimoyamada, M. & Yamauchi, R. 2006. Isolation and characterization of rosmarinic acid oligomers in Celastrus hindsii Benth leaves and their antioxidative activity. Journal of Agricultural and Food Chemistry, 54(11): 3786–3793. DOI: https://doi.org/10.1021/jf052743f

Mohammadi, A., Mansoori, B. & Baradaran, B. 2017. Regulation of miRNAs by herbal medicine: An emerging field in cancer therapies. Biomedicine and Pharmacotherapy, 86: 262–270. DOI: https://doi.org/10.1016/j.biopha.2016.12.023

Nabih, H.K. 2020. Crosstalk between NRF2 and Dicer through metastasis regulating MicroRNAs; mir-34a, mir-200 family and mir-103/107 family. Archives of Biochemistry and Biophysics, 686: 108326. DOI: https://doi.org/10.1016/j.abb.2020.108326

Nakanishi, K. & Yoshikawa, N. 2016. Immunoglobulin A nephropathies in children (Includes HSP). In Pediatric Nephrology. DOI: https://doi.org/10.1007/978-3-662-43596-0_28

Ndeh, D. & Gilbert, H.J. 2018. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiology Reviews, 42(2): 146–164. DOI: https://doi.org/10.1093/femsre/fuy002

Nguyen, V.H., Pham, T.L., Ha, T.T.T. & Hoang, T.L.T. 2020a. Comparative proteomic analysis of Celastrus hindsii Benth. phenotypes reveals an intraspecific variation. Journal of Plant Biotechnology, 47(4): 273–282. DOI: https://doi.org/10.5010/JPB.2020.47.4.273

Nguyen, V.H., Pham, T.L. & Nguyen, Q.T. 2020b. Anti-oxidative metabolite comparison between two phenotypes of Celastrus hindsii Benth. Asian Journal of Agriculture and Biology, 8(4): 501–510.

Nosáľová, G., Prisenžňáková, L., Paulovičová, E., Capek, P., Matulová, M., Navarini, L. & Liverani, F. S. 2011. Antitussive and immunomodulating activities of instant coffee arabinogalactan-protein. International Journal of Biological Macromolecules, 49(4): 493–497. DOI: https://doi.org/10.1016/j.ijbiomac.2011.06.004

Otsuka, K., Yamamoto, Y., Matsuoka, R. & Ochiya, T. 2018. Maintaining good miRNAs in the body keeps the doctor away: Perspectives on the relationship between food-derived natural products and microRNAs in relation to exosomes/extracellular vesicles. Molecular Nutrition and Food Research, 62(1): 1–12. DOI: https://doi.org/10.1002/mnfr.201870011

Pham, T.N.A., Kim, H.L., Oh, S. & Yang, S.H. 2022. Anti-Inflammatory effects of the chemical compounds obtained from Celastrus hindsii in RAW264.7 cells. Microbiology and Biotechnology Letters, 50(1): 15–21. DOI: https://doi.org/10.48022/mbl.2111.11001

Roy, U.K., Lavignac, N., Rahman, A.M. & Nielsen, B.V. 2018. Purification of lectin and Kunitz trypsin inhibitor from soya seeds. Journal of Chromatographic Science, 56(5): 436-442. DOI: https://doi.org/10.1093/chromsci/bmy018

Rozov, S.M., Permyakova, N.V & Deineko, E.V. 2018. Main strategies of plant expression system glycoengineering for producing humanized recombinant pharmaceutical proteins. 83(3): 215-232. DOI: https://doi.org/10.1134/S0006297918030033

Scoparo, C.T., Souza, L.M., Dartora, N., Sassaki, G.L., Santana-Filho, A.P., Werner, M.F.P., Borato, D.G., Baggio, C.H. & Iacomini, M. 2016. Chemical characterization of heteropolysaccharides from green and black teas (Camellia sinensis) and their anti-ulcer effect. International Journal of Biological Macromolecules, 86: 772–781. DOI: https://doi.org/10.1016/j.ijbiomac.2016.02.017

Singh, N. & Sharma, A. 2017. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways. Comptes Rendus - Biologies, 340(11–12): 481–491. DOI: https://doi.org/10.1016/j.crvi.2017.09.009

Singh, N., Srivastava, S. & Sharma, A. 2016. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene, 575(2): 570–576. DOI: https://doi.org/10.1016/j.gene.2015.09.036

Taniya, M.S., MV, R., PS, S., Krishnan, G. & S, P. 2020. Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Bioscience, 35: 100588. DOI: https://doi.org/10.1016/j.fbio.2020.100588

Tonolo, F., Folda, A., Cesaro, L., Scalcon, V., Marin, O., Ferro, S., Bindoli, A. & Rigobello, M.P. 2020. Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. Journal of Functional Foods, 64: 103696. DOI: https://doi.org/10.1016/j.jff.2019.103696

Witwer, K.W. & Hirschi, K.D. 2014. Transfer and functional consequences of dietary microRNAs in vertebrates: Concepts in search of corroboration. BioEssays, 36(4): 394–406. DOI: https://doi.org/10.1002/bies.201300150

Xing, A., Pan, L. & Gao, J. 2018. p100 functions as a metastasis activator and is targeted by tumor suppressing microRNA-320a in lung cancer. Thoracic Cancer, 9(1): 152–158. DOI: https://doi.org/10.1111/1759-7714.12564

Yan, C., Yan, Z., Wang, Y., Yan, X. & Han, Y. 2014. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. Journal of Experimental Botany, 65(20): 5933–5944. DOI: https://doi.org/10.1093/jxb/eru334

Yu, L., Di, Y., Xin, L., Ren, Y., Liu, X., Sun, X., Zhang, W., Yao, Z. & Yang, J. 2017. SND1 acts as a novel gene transcription activator recognizing the conserved Motif domains of Smad promoters, inducing TGFβ1 response and breast cancer metastasis. Oncogene, 36(27): 3903–3914. DOI: https://doi.org/10.1038/onc.2017.30

Zahid, A., Despres, J., Benard, M., Nguema-Ona, E., Leprince, J., Vaudry, D., Rihouey, C., Vicré-Gibouin, M., Driouich, A. & Follet-Gueye, M.L. 2017. Arabinogalactan proteins from Baobab and Acacia seeds influence innate immunity of human keratinocytes In vitro. Journal of Cellular Physiology, 232(9): 2558–2568. DOI: https://doi.org/10.1002/jcp.25646

Zhou, J., Chen, M., Wu, S., Liao, X., Wang, J., Wu, Q., Zhuang, M. & Ding, Y. 2020. A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Research International, 134: 109230. DOI: https://doi.org/10.1016/j.foodres.2020.109230

Zhu, W. & Tan, S. 2017. Tudor-SN protein expression in colorectal cancer and its association with clinical characteristics. Open Life Sciences, 12(1): 237-242. DOI: https://doi.org/10.1515/biol-2017-0028

Published

31-03-2024

How to Cite

Pham, T. L., & Nguyen, V. H. (2024). An in silico Approach For Identification of Potential Therapeutic Targets For Cancer Treatment From Celastrus hindsii Benth. Malaysian Applied Biology, 53(1), 35–42. https://doi.org/10.55230/mabjournal.v53i1.2807

Issue

Section

Research Articles