An in silico Approach For Identification of Potential Therapeutic Targets For Cancer Treatment From Celastrus hindsii Benth


  • Thanh Loan Pham Institute of Applied Research and Development, Hung Vuong University, Phu Tho province, 290000, Vietnam
  • Van Huy Nguyen Institute of Applied Research and Development, Hung Vuong University, Phu Tho province, 290000, Vietnam


Bioinformatics, Celastrus hindsii, In silico approach, Medicinal plant, Therapeutic targets


Celastrus hindsii Benth., a medicinal plant celebrated for its traditionally medicinal and practically therapeutic properties, has been used for generations in Vietnam to support the treatment of ulcers, tumors, and inflammation. The difference between several phenotypes, primarily identified as Broad Leaf (BL) and Narrow Leaf (NL), has been clarified by convincing scientific evidence through our previous proteomics study, which also revealed several bioactive proteins and peptides. Therefore, based on the findings, this study further investigated their therapeutic properties using a bioinformatics tool (BLASTP) and analyzing literature data. The results showed the distinguished variations in protein profile between the NL and BL proteomes and revealed five significant proteins with therapeutic properties. Of these, three proteins can have anti-tumor and anti-inflammatory activity and have been proven effective in cancer treatment. Therefore, C. hindsii, particularly the BL phenotype with elevated levels of therapeutic proteins, could be a promising plant candidate for future intensive research and applications for cancer treatment.


Download data is not yet available.


Metrics Loading ...


Bento, J.F., Noleto, G.R. & De Oliveira Petkowicz, C.L. 2014. Isolation of an arabinogalactan from Endopleura uchi bark decoction and its effect on HeLa cells. Carbohydrate Polymers, 101(1): 871–877. DOI:

Blanco, M.A., Alečković, M., Hua, Y., Li, T., Wei, Y., Xu, Z., Cristea, I. M. & Kang, Y. 2011. Identification of staphylococcal nuclease domain-containing 1 (SND1) as a metadherin-interacting protein with metastasis-promoting functions. Journal of Biological Chemistry, 286(22): 19982–19992. DOI:

Cheng, J., Guo, J., North, B.J., Tao, K., Zhou, P. & Wei, W. 2019. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1871(1): 138–159. DOI:

Chen, S.L., Yu, H., Luo, H.M., Wu, Q., Li, C.F. & Steinmetz, A. 2016. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine, 11(37): 1–10. DOI:

Chin, A.R., Fong, M.Y., Somlo, G., Wu, J., Swiderski, P., Wu, X. & Wang, S.E. 2016. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Research, 26(2): 217-228. DOI:

Cid-Gallegos, M.S., Corzo-Ríos, L.J., Jiménez-Martínez, C. & Sánchez-Chino, X.M. 2022. Protease inhibitors from plants as therapeutic agents- A Review. Plant Foods for Human Nutrition, 77(1): 20–29. DOI:

Cijo, V., Dellaire, G. & Rupasinghe, H.P.V. 2017. Plant flavonoids in cancer chemoprevention: role in genome stability. The Journal of Nutritional Biochemistry, 45: 1–14. DOI:

Cui, D., Xiong, X. & Zhao, Y. 2016. Cullin-RING ligases in regulation of autophagy. Cell Division, 11: 1-8. DOI:

De Filippis, L. & Magel, E. 2012. Identification of biochemical differences between the sapwood and transition zone in Robinia pseudoacacia L. by differential display of proteins. 66(4): 543–549. DOI:

Fukudome, A. & Fukuhara, T. 2017. Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. Journal of Plant Research, 130(1): 33–44. DOI:

Gutierrez-Beltran, E., Denisenko, T.V., Zhivotovsky, B. & Bozhkov, P.V. 2016. Tudor staphylococcal nuclease: Biochemistry and functions. Cell Death and Differentiation, 23(11): 1739–1748. DOI:

Hu, X.Q., Han, W., Han, Z.Z., Liu, Q.X., Xu, X.K., Fu, P. & Li, H.L. 2014. A new macrocyclic lactone and a new quinoflavan from Celastrus hindsii. Phytochemistry Letters, 7: 169-172. DOI:

Iravani, S. & Varma, R.S. 2019. Plant-derived edible nanoparticles and miRNAs: Emerging frontier for therapeutics and targeted drug-delivery. ACS Sustainable Chemistry & Engineering, 7(9): 8055–8069. DOI:

Jang, S.M., Redon, C.E. & Aladjem, M.I. 2018. Chromatin-bound cullin-ring ligases: Regulatory roles in DNA replication and potential targeting for cancer therapy. Frontiers in Molecular Biosciences, 5(19). DOI:

Kerzendorfer, C., Hart, L., Colnaghi, R., Carpenter, G., Alcantara, D., Outwin, E., Carr, A.M. & O’Driscoll, M. 2011. CUL4B-deficiency in humans: Understanding the clinical consequences of impaired Cullin 4-RING E3 ubiquitin ligase function. Mechanisms of Ageing and Development, 132(8–9): 366–373. DOI:

Kuo, Y.-H., Chen, C.F. & Kuo, L.M.Y. 1995. Celahinine a, a new sesquiterpene pyridine alkaloid from Celastrus hindsii. Journal of Natural Products, 58(11): 1735–1738. DOI:

Lafarga, T., Acién-Fernández, F.G. & Garcia-Vaquero, M. 2020. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Research, 48: 101909. DOI:

Li, C.L., Yang, W.Z., Shi, Z. & Yuan, H.S. 2018. Tudor staphylococcal nuclease is a structure-specific ribonuclease that degrades RNA at unstructured regions during microRNA decay. RNA, 24:739-748. DOI:

Ly, T.N., Shimoyamada, M. & Yamauchi, R. 2006. Isolation and characterization of rosmarinic acid oligomers in Celastrus hindsii Benth leaves and their antioxidative activity. Journal of Agricultural and Food Chemistry, 54(11): 3786–3793. DOI:

Mohammadi, A., Mansoori, B. & Baradaran, B. 2017. Regulation of miRNAs by herbal medicine: An emerging field in cancer therapies. Biomedicine and Pharmacotherapy, 86: 262–270. DOI:

Nabih, H.K. 2020. Crosstalk between NRF2 and Dicer through metastasis regulating MicroRNAs; mir-34a, mir-200 family and mir-103/107 family. Archives of Biochemistry and Biophysics, 686: 108326. DOI:

Nakanishi, K. & Yoshikawa, N. 2016. Immunoglobulin A nephropathies in children (Includes HSP). In Pediatric Nephrology. DOI:

Ndeh, D. & Gilbert, H.J. 2018. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiology Reviews, 42(2): 146–164. DOI:

Nguyen, V.H., Pham, T.L., Ha, T.T.T. & Hoang, T.L.T. 2020a. Comparative proteomic analysis of Celastrus hindsii Benth. phenotypes reveals an intraspecific variation. Journal of Plant Biotechnology, 47(4): 273–282. DOI:

Nguyen, V.H., Pham, T.L. & Nguyen, Q.T. 2020b. Anti-oxidative metabolite comparison between two phenotypes of Celastrus hindsii Benth. Asian Journal of Agriculture and Biology, 8(4): 501–510.

Nosáľová, G., Prisenžňáková, L., Paulovičová, E., Capek, P., Matulová, M., Navarini, L. & Liverani, F. S. 2011. Antitussive and immunomodulating activities of instant coffee arabinogalactan-protein. International Journal of Biological Macromolecules, 49(4): 493–497. DOI:

Otsuka, K., Yamamoto, Y., Matsuoka, R. & Ochiya, T. 2018. Maintaining good miRNAs in the body keeps the doctor away: Perspectives on the relationship between food-derived natural products and microRNAs in relation to exosomes/extracellular vesicles. Molecular Nutrition and Food Research, 62(1): 1–12. DOI:

Pham, T.N.A., Kim, H.L., Oh, S. & Yang, S.H. 2022. Anti-Inflammatory effects of the chemical compounds obtained from Celastrus hindsii in RAW264.7 cells. Microbiology and Biotechnology Letters, 50(1): 15–21. DOI:

Roy, U.K., Lavignac, N., Rahman, A.M. & Nielsen, B.V. 2018. Purification of lectin and Kunitz trypsin inhibitor from soya seeds. Journal of Chromatographic Science, 56(5): 436-442. DOI:

Rozov, S.M., Permyakova, N.V & Deineko, E.V. 2018. Main strategies of plant expression system glycoengineering for producing humanized recombinant pharmaceutical proteins. 83(3): 215-232. DOI:

Scoparo, C.T., Souza, L.M., Dartora, N., Sassaki, G.L., Santana-Filho, A.P., Werner, M.F.P., Borato, D.G., Baggio, C.H. & Iacomini, M. 2016. Chemical characterization of heteropolysaccharides from green and black teas (Camellia sinensis) and their anti-ulcer effect. International Journal of Biological Macromolecules, 86: 772–781. DOI:

Singh, N. & Sharma, A. 2017. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways. Comptes Rendus - Biologies, 340(11–12): 481–491. DOI:

Singh, N., Srivastava, S. & Sharma, A. 2016. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene, 575(2): 570–576. DOI:

Taniya, M.S., MV, R., PS, S., Krishnan, G. & S, P. 2020. Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Bioscience, 35: 100588. DOI:

Tonolo, F., Folda, A., Cesaro, L., Scalcon, V., Marin, O., Ferro, S., Bindoli, A. & Rigobello, M.P. 2020. Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. Journal of Functional Foods, 64: 103696. DOI:

Witwer, K.W. & Hirschi, K.D. 2014. Transfer and functional consequences of dietary microRNAs in vertebrates: Concepts in search of corroboration. BioEssays, 36(4): 394–406. DOI:

Xing, A., Pan, L. & Gao, J. 2018. p100 functions as a metastasis activator and is targeted by tumor suppressing microRNA-320a in lung cancer. Thoracic Cancer, 9(1): 152–158. DOI:

Yan, C., Yan, Z., Wang, Y., Yan, X. & Han, Y. 2014. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. Journal of Experimental Botany, 65(20): 5933–5944. DOI:

Yu, L., Di, Y., Xin, L., Ren, Y., Liu, X., Sun, X., Zhang, W., Yao, Z. & Yang, J. 2017. SND1 acts as a novel gene transcription activator recognizing the conserved Motif domains of Smad promoters, inducing TGFβ1 response and breast cancer metastasis. Oncogene, 36(27): 3903–3914. DOI:

Zahid, A., Despres, J., Benard, M., Nguema-Ona, E., Leprince, J., Vaudry, D., Rihouey, C., Vicré-Gibouin, M., Driouich, A. & Follet-Gueye, M.L. 2017. Arabinogalactan proteins from Baobab and Acacia seeds influence innate immunity of human keratinocytes In vitro. Journal of Cellular Physiology, 232(9): 2558–2568. DOI:

Zhou, J., Chen, M., Wu, S., Liao, X., Wang, J., Wu, Q., Zhuang, M. & Ding, Y. 2020. A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Research International, 134: 109230. DOI:

Zhu, W. & Tan, S. 2017. Tudor-SN protein expression in colorectal cancer and its association with clinical characteristics. Open Life Sciences, 12(1): 237-242. DOI:



How to Cite

Pham, T. L., & Nguyen, V. H. (2024). An in silico Approach For Identification of Potential Therapeutic Targets For Cancer Treatment From Celastrus hindsii Benth. Malaysian Applied Biology, 53(1), 35–42.



Research Articles