Tapping Into Tinospora crispa and Tinospora cordifolia Bioactive Potentials Via Antioxidant, Antiglycation and GC-MS Analyses

https://doi.org/10.55230/mabjournal.v53i6.2

Authors

  • Luqman Jaya Department of Basic Medical Sciences, Faculty of Medicine and Health Science, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
  • Zunika Amit Department of Basic Medical Sciences, Faculty of Medicine and Health Science, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
  • Teknowilie Singa Department of Basic Medical Sciences, Faculty of Medicine and Health Science, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
  • Patrick Nwabueze Okechukwu Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
  • Mohd Johari Ibahim Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
  • Aisha Mohd Din Department of Basic Sciences, Faculty of Allied Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Malaysia
  • Gabriele Ruth Anisah Froemming Centre of Preclinical Sciences, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia

Keywords:

Antioxidants, Tinospora crispa, Tinospora cordifolia, GC-MS

Abstract

Tinospora crispa and Tinospora cordifolia are plant species that are commonly used in traditional medicine, such as Ayurvedic medicine, renowned for their therapeutic roles in addressing diverse health issues, including diabetes. These plants are esteemed for their ability to counter oxidative stress through electron donation which is a prominent feature of antioxidants. However, a sole assessment of their antioxidant effectiveness is insufficient to holistically understand their antioxidative capabilities. This study aimed to study the antioxidative and antiglycation properties exhibited by T. crispa and T. cordifolia. This evaluation encompassed a range of tests measuring radical scavenging activity (DPPH assay), capacity for reducing ferric ions (FRAP assay), and their antiglycation potential (BSA-MGO assay). GC-MS analysis was employed to identify compounds with antioxidative properties within T. crispa and T. cordifolia. The stems and leaves of T. crispa and T. cordifolia underwent solvent extraction using 90% methanol and hot distilled water. Notably, the methanolic extract of T. cordifolia displayed the most robust radical scavenging activity, evident from its lowest IC50 value, 0.03 ± 0.00 mg/mL in the DPPH assay. Conversely, the methanolic extract of T. crispa exhibited the lowest IC50 value, 0.19 ± 0.00 mg/mL in the FRAP assay. Additionally, the methanolic extract of T. cordifolia showcased a minimal IC50 value of 0.52 ± 0.18 mg/mL in the BSA-MGO antiglycation assay. It’s worth noting that the methanolic extracts of both T. crispa and T. cordifolia outperformed their hot water counterparts in terms of antioxidative activity, potentially due to the presence of phytochemical compounds such as phenol, 4-vinyl guaiacol, guaiacol, syringol, and vanillin in the methanolic extracts. The study highlights the potent antioxidative properties of T. crispa and T. cordifolia in supporting their traditional medicinal use and leads the way for the development of antioxidant therapies, particularly for managing oxidative stress-related conditions such as diabetes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahmad, W., Jantan, I. & Bukhari, S.N.A. 2016. Tinospora crispa (L.) Hook. f. & Thomson: A review of its ethnobotanical, phytochemical, and pharmacological aspects. Frontiers in Pharmacology, 7: 59.

Anouar, E., Calliste, C.A., Košinová, P., Di Meo, F., Duroux, J.L., Champavier, Y., Marakchi, K. & Trouillas, P. 2009. Free radical scavenging properties of guaiacol Oligomers: A Combined experimental and quantum study of the guaiacyl-moiety role. Journal of Physical Chemistry A, 113(50): 13881–13891.

Azadfar, M., Gao, A.H. & Chen, S. 2015. Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol. International Journal of Biological Macromolecules, 75: 58–66.

Baral, M. 2010. In vitro antioxidant activity of the whole plant of Amaranthus spinosus Linn. International Journal of Biomedical and Pharmaceutical Sciences, 5(1): 75–78.

Bartnik, M. & Facey, P.C. 2017. Glycosides. In: Pharmacognosy: Fundamentals, Applications and Strategy. S. Badal and R. Delgoda (Eds.). Academic Press. pp. 101–161.

Cerretani, L. & Bendini, A. 2010. Rapid Assays to evaluate the antioxidant capacity of phenols in virgin olive oil. In: Olives and Olive Oil in Health and Disease Prevention. V.R. Preedy and R.R. Watson (Eds.). Academic Press. pp. 625–635.

Costa, J., Islam, M., Santos, P., Ferreira, P., Oliveira, G., Alencar, M., Paz, M., Ferreira, É., Feitosa, C., Citó, A., Sousa, D. & Melo-Cavalcante, A. 2016. Evaluation of antioxidant activity of phytol using non- and pre-clinical models. Current Pharmaceutical Biotechnology, 17(14): 1278–1284.

Daglia, M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2): 174–181.

Das, B.K., Al-Amin, M.M., Russel, S.M., Kabir, S., Bhattacherjee, R. & Hannan, J.M.A. 2014. Phytochemical screening and evaluation of analgesic activity of Oroxylum indicum. In Indian Journal of Pharmaceutical Sciences, 76(6): 571–575.

Gao, T., Zhang, Y., Shi, J., Mohamed, S.R., Xu, J. & Liu, X. 2021. The antioxidant guaiacol exerts fungicidal activity against fungal growth and deoxynivalenol production in Fusarium graminearum. Frontiers in Microbiology, 12: 762844.

Ghani, U. 2020. Chapter four - Terpenoids and steroids. In: Alpha-Glucosidase Inhibitors. U. Ghani (Ed.). Elsevier. pp. 101–117.

Gul, R., Jan, S. U., Faridullah, S., Sherani, S. & Jahan, N. 2017. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Scientific World Journal, 2017: 5873648.

Gülçin, I. 2011. Antioxidant activity of eugenol: A structure-activity relationship study. Journal of Medicinal Food, 14(9): 975–985.

Haminiuk, C.W.I., Plata-Oviedo, M.S.V., de Mattos, G., Carpes, S.T. & Branco, I.G. 2014. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. Journal of Food Science and Technology, 51(10): 2862–2866.

Husain, A., Khan, S.A., Iram, F., Iqbal, M.A. & Asif, M. 2019. Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. European Journal of Medicinal Chemistry, 171: 66–92.

Ibahim, M.J., Wan-Nor I’zzah, W.M.Z., Narimah, A.H.H., Nurul, A.Z., Siti-Nur, S.S.A.R. & Froemming, G.A. 2011. Anti-proliperative and antioxidant effects of Tinospora crispa (Batawali). Biomedical Research, 22(1): 57–62.

Ilaiyaraja, N. & Khanum, F. 2011. Antioxidant potential of Tinospora cordifolia extracts and their protective effect on oxidation of biomolecules. Pharmacognosy Journal, 3(20), 56–62.

Irshad, M., Zafaryab, M., Singh, M. & Rizvi, M.M.A. 2012. Comparative analysis of the antioxidant activity of Cassia fistula extracts. International Journal of Medicinal Chemistry, 2012: 157125.

Ismail, N.H., Osman, K., Zulkefli, A.F., Mokhtar, M.H. & Ibrahim, S.F. 2021. The physicochemical characteristics of gelam honey and its outcome on the female reproductive tissue of sprague-dawley rats: A preliminary study. Molecules, 26(11): 33466.

Jaiswal, S.G., Patel, M., Saxena, D.K. & Naik, S.N. 2014. Antioxidant properties of piper betel (L.) leaf extracts from six different geographical domain of India. Journal of Bioresource Engineering and Technology, 2(2): 12–20.

Jones, D., Ormondroyd, G.O., Curling, S.F., Popescu, C.-M. & Popescu, M.-C. 2017. Chemical compositions of natural fibres. In: Advanced High Strength Natural Fibre Composites in Construction M. Fan and C. Fu (Eds.). Elsevier. pp. 23–58.

Kalita, P., Tapan, B.K., Pal, T.K. & Kalita, R. 2013. Estimation of total flavonoids content (TFC) and anti oxidant activities of methanolic whole plant extract of Biophytum sensitivum Linn. Journal of Drug Delivery and Therapeutics, 3(4): 33–37.

Kumar, V. 2015. Antidyslipidemic and antioxidant activities of Tinospora cordifolia stem extract in alloxan induced diabetic rats. Indian Journal of Clinical Biochemistry, 30(4): 473–478.

Kumar, V., Singh, S., Singh, A., Dixit, A.K., Srivastava, B., Sidhu, G.K., Singh, R., Meena, A.K., Singh, R.P., Subhose, V. & Prakash, O. 2018. Phytochemical, antioxidant, antimicrobial, and protein binding qualities of hydro-ethanolic extract of Tinospora cordifolia. Journal of Biologically Active Products from Nature, 8(3): 192–200.

Lee, Y.J., Kim, D.B., Lee, J.S., Cho, J.H., Kim, B.K., Choi, H.S., Lee, B.Y. & Lee, O.H. 2013. Antioxidant activity and anti-adipogenic effects of wild herbs mainly cultivated in Korea. Molecules, 18(10): 12937–12950.

Liang, N. & Kitts, D. D. 2014. Antioxidant property of coffee components: Assessment of methods that define mechanism of action. Molecules, 19(11): 19180–19208.

Loo, A. Y., Jain, K. & Darah, I. 2008. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chemistry, 107(3): 1151–1160.

Mendoza, N. & Silva, E.M.E. 2018. Introduction to phytochemicals: Secondary metabolites from plants with active principles for pharmacological importance. In: Phytochemicals - Source of Antioxidants and Role in Disease Prevention. InTech.

Mfotie Njoya, E. 2021. Medicinal plants, antioxidant potential, and cancer. In: Cancer: Oxidative Stress and Dietary Antioxidants. V.R. Preedy & V.B. Patel (Eds.). Academic Press. pp. 349–357.

Michalkiewicz, S. 2013. Anodic oxidation of parabens in acetic acid-acetonitrile solutions. Journal of Applied Electrochemistry, 43(1): 85–97.

Murphy, K.J., Marques-Lopes, I. & Sánchez-Tainta, A. 2017. Cereals and legumes. In: The Prevention of Cardiovascular Disease Through the Mediterranean Diet. A. Sánchez-Villegas and A. Sánchez-Tainta (Eds.). Academic Press. pp. 111–132.

Nagababu, E., Rifkind, J.M., Boindala, S. & Nakka, L. 2010. Assessment of antioxidant activity of eugenol in vitro and in vivo. In: Free Radicals and Antioxidant Protocols. R.M. Uppu, S.N. Murthy, W.A. Pryor, N.L. Parinandi (Ed.). Springer. pp. 165–180.

Park, J.H., Lee, M. & Park, E. 2014. Antioxidant activity of orange flesh and peel extracted with various solvents. Preventive Nutrition and Food Science, 19(4): 291–298.

Richard, T., Temsamani, H., Cantos-Villar, E. & Monti, J.P. 2013. Application of LC-MS and LC-NMR techniques for secondary metabolite identification. Advances in Botanical Research, 67: 67–98). Academic Press.

Sadeer, N.B., Montesano, D., Albrizio, S., Zengin, G. & Mahomoodally, M.F. 2020. The versatility of antioxidant assays in food science and safety—chemistry, applications, strengths, and limitations. Antioxidants, 9(8): 709.

SamLing, B.A., Assim, Z., Tong, W.Y., Leong, C.R., Ab Rashid, S., Nik Mohamed Kamal, N.N.S., Muhamad, M. & Tan, W.N. 2021. Cynometra cauliflora L.: An indigenous tropical fruit tree in Malaysia bearing essential oils and their biological activities. Arabian Journal of Chemistry, 14(9): 103302.

Santos, C.C.de M.P., Salvadori, M.S., Mota, V.G., Costa, L.M., de Almeida, A.A.C., de Oliveira, G.A.L., Costa, J.P., de Sousa, D.P., de Freitas, R.M. & de Almeida, R.N. 2013. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neuroscience Journal, 2013: 949452.

Sarker, U. & Oba, S. 2019. Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Scientific Reports, 9(1): 20413.

Schalkwijk, C.G. & Stehouwer, C.D.A. 2020. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiological Reviews, 100(1): 407–461.

Shah, R.K. & Yadav, R.N.S. 2015. Qualitative phytochemical analysis and estimation of total phenols and flavonoids in leaf extract of Sarcochlamys pulcherrima Wedd. Global Journal of Bio-Science and Biotechnology, 4(1): 81–84.

Singa, T.A., Okechukwu, P.N., Amit, Z.B., Ibrahim, M.J., Kapitonova, M. & Anisah Froemming, G.R. 2022. The ameliorating effects of Tinospora species on the formation of advanced glycation end-products (AGEs) and associated oxidative stress. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 14(3): 405–420.

Siswadi, S. & Saragih, G.S. 2021. Phytochemical analysis of bioactive compounds in ethanolic extract of Sterculia quadrifida R.Br. AIP Conference Proceedings, 2353(May): 030098.

Stanner, S. & Weichselbaum, E. 2012. Antioxidants. In: Encyclopedia of Human Nutrition. E. Caballero (Ed.). pp. pp. 88–99. Academic Press.

Starowicz, M. & Zieliński, H. 2019. Inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in European cuisine. Antioxidants, 8(4): 100.

Tai, A., Sawano, T., Yazama, F. & Ito, H. 2011. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochimica et Biophysica Acta - General Subjects, 1810(2): 170–177.

Terpinc, P., Polak, T., Šegatin, N., Hanzlowsky, A., Ulrih, N.P. & Abramovič, H. 2011. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chemistry, 128(1): 62–69.

Thomas, A., Rajesh, E.K. & Kumar, D.S. 2016. The significance of Tinospora crispa in treatment of diabetes mellitus. Phytotherapy Research, 30(3): 357–366.

Tobgay, U., Boonyanuphong, P. & Meunprasertdee, P. 2020. Comparison of hot water and methanol extraction combined with ultrasonic pretreatment on antioxidant properties of two pigmented rice cultivars. Food Research, 4(2): 547–556.

Ulewicz-Magulska, B. & Wesolowski, M. 2019. Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes. Plant Foods for Human Nutrition, 74(1): 61–67.

Waqas, K., Muller, M., Koedam, M., el Kadi, Y., Zillikens, M.C. & van der Eerden, B.C.J. 2022. Methylglyoxal – an advanced glycation end products (AGEs) precursor – Inhibits differentiation of human MSC-derived osteoblasts in vitro independently of receptor for AGEs (RAGE). Bone, 164: 116526.

Wojdyło, A., Oszmiański, J. & Czemerys, R. 2007. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3): 940–949.

Zeb, A. 2020. Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9): e13394.

Zulkefli, H.N., Mohamad, J. & Abidin, N.Z. 2013. Antioxidant activity of methanol extract of Tinospora crispa and Tabernaemontana corymbosa. Sains Malaysiana, 42(6): 697–706.

Published

25-12-2024

How to Cite

Jaya, L., Amit, Z., Singa , T. ., Okechukwu, P. N., Ibahim , M. J., Mohd Din, A. ., & Froemming , G. R. A. (2024). Tapping Into Tinospora crispa and Tinospora cordifolia Bioactive Potentials Via Antioxidant, Antiglycation and GC-MS Analyses. Malaysian Applied Biology, 53(6), 21–33. https://doi.org/10.55230/mabjournal.v53i6.2

Issue

Section

Research Articles