Tapping Into Tinospora crispa and Tinospora cordifolia Bioactive Potentials Via Antioxidant, Antiglycation and GC-MS Analyses
Keywords:
Antioxidants, Tinospora crispa, Tinospora cordifolia, GC-MSAbstract
Tinospora crispa and Tinospora cordifolia are plant species that are commonly used in traditional medicine, such as Ayurvedic medicine, renowned for their therapeutic roles in addressing diverse health issues, including diabetes. These plants are esteemed for their ability to counter oxidative stress through electron donation which is a prominent feature of antioxidants. However, a sole assessment of their antioxidant effectiveness is insufficient to holistically understand their antioxidative capabilities. This study aimed to study the antioxidative and antiglycation properties exhibited by T. crispa and T. cordifolia. This evaluation encompassed a range of tests measuring radical scavenging activity (DPPH assay), capacity for reducing ferric ions (FRAP assay), and their antiglycation potential (BSA-MGO assay). GC-MS analysis was employed to identify compounds with antioxidative properties within T. crispa and T. cordifolia. The stems and leaves of T. crispa and T. cordifolia underwent solvent extraction using 90% methanol and hot distilled water. Notably, the methanolic extract of T. cordifolia displayed the most robust radical scavenging activity, evident from its lowest IC50 value, 0.03 ± 0.00 mg/mL in the DPPH assay. Conversely, the methanolic extract of T. crispa exhibited the lowest IC50 value, 0.19 ± 0.00 mg/mL in the FRAP assay. Additionally, the methanolic extract of T. cordifolia showcased a minimal IC50 value of 0.52 ± 0.18 mg/mL in the BSA-MGO antiglycation assay. It’s worth noting that the methanolic extracts of both T. crispa and T. cordifolia outperformed their hot water counterparts in terms of antioxidative activity, potentially due to the presence of phytochemical compounds such as phenol, 4-vinyl guaiacol, guaiacol, syringol, and vanillin in the methanolic extracts. The study highlights the potent antioxidative properties of T. crispa and T. cordifolia in supporting their traditional medicinal use and leads the way for the development of antioxidant therapies, particularly for managing oxidative stress-related conditions such as diabetes.
Downloads
Metrics
References
Ahmad, W., Jantan, I. & Bukhari, S.N.A. 2016. Tinospora crispa (L.) Hook. f. & Thomson: A review of its ethnobotanical, phytochemical, and pharmacological aspects. Frontiers in Pharmacology, 7: 59. DOI: https://doi.org/10.3389/fphar.2016.00059
Anouar, E., Calliste, C.A., Košinová, P., Di Meo, F., Duroux, J.L., Champavier, Y., Marakchi, K. & Trouillas, P. 2009. Free radical scavenging properties of guaiacol Oligomers: A Combined experimental and quantum study of the guaiacyl-moiety role. Journal of Physical Chemistry A, 113(50): 13881–13891. DOI: https://doi.org/10.1021/jp906285b
Azadfar, M., Gao, A.H. & Chen, S. 2015. Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol. International Journal of Biological Macromolecules, 75: 58–66. DOI: https://doi.org/10.1016/j.ijbiomac.2014.12.049
Baral, M. 2010. In vitro antioxidant activity of the whole plant of Amaranthus spinosus Linn. International Journal of Biomedical and Pharmaceutical Sciences, 5(1): 75–78.
Bartnik, M. & Facey, P.C. 2017. Glycosides. In: Pharmacognosy: Fundamentals, Applications and Strategy. S. Badal and R. Delgoda (Eds.). Academic Press. pp. 101–161. DOI: https://doi.org/10.1016/B978-0-12-802104-0.00008-1
Cerretani, L. & Bendini, A. 2010. Rapid Assays to evaluate the antioxidant capacity of phenols in virgin olive oil. In: Olives and Olive Oil in Health and Disease Prevention. V.R. Preedy and R.R. Watson (Eds.). Academic Press. pp. 625–635. DOI: https://doi.org/10.1016/B978-0-12-374420-3.00067-X
Costa, J., Islam, M., Santos, P., Ferreira, P., Oliveira, G., Alencar, M., Paz, M., Ferreira, É., Feitosa, C., Citó, A., Sousa, D. & Melo-Cavalcante, A. 2016. Evaluation of antioxidant activity of phytol using non- and pre-clinical models. Current Pharmaceutical Biotechnology, 17(14): 1278–1284. DOI: https://doi.org/10.2174/1389201017666161019155715
Daglia, M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2): 174–181. DOI: https://doi.org/10.1016/j.copbio.2011.08.007
Das, B.K., Al-Amin, M.M., Russel, S.M., Kabir, S., Bhattacherjee, R. & Hannan, J.M.A. 2014. Phytochemical screening and evaluation of analgesic activity of Oroxylum indicum. In Indian Journal of Pharmaceutical Sciences, 76(6): 571–575.
Gao, T., Zhang, Y., Shi, J., Mohamed, S.R., Xu, J. & Liu, X. 2021. The antioxidant guaiacol exerts fungicidal activity against fungal growth and deoxynivalenol production in Fusarium graminearum. Frontiers in Microbiology, 12: 762844. DOI: https://doi.org/10.3389/fmicb.2021.762844
Ghani, U. 2020. Chapter four - Terpenoids and steroids. In: Alpha-Glucosidase Inhibitors. U. Ghani (Ed.). Elsevier. pp. 101–117. DOI: https://doi.org/10.1016/B978-0-08-102779-0.00004-6
Gul, R., Jan, S. U., Faridullah, S., Sherani, S. & Jahan, N. 2017. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Scientific World Journal, 2017: 5873648. DOI: https://doi.org/10.1155/2017/5873648
Gülçin, I. 2011. Antioxidant activity of eugenol: A structure-activity relationship study. Journal of Medicinal Food, 14(9): 975–985. DOI: https://doi.org/10.1089/jmf.2010.0197
Haminiuk, C.W.I., Plata-Oviedo, M.S.V., de Mattos, G., Carpes, S.T. & Branco, I.G. 2014. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. Journal of Food Science and Technology, 51(10): 2862–2866. DOI: https://doi.org/10.1007/s13197-012-0759-z
Husain, A., Khan, S.A., Iram, F., Iqbal, M.A. & Asif, M. 2019. Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. European Journal of Medicinal Chemistry, 171: 66–92. DOI: https://doi.org/10.1016/j.ejmech.2019.03.021
Ibahim, M.J., Wan-Nor I’zzah, W.M.Z., Narimah, A.H.H., Nurul, A.Z., Siti-Nur, S.S.A.R. & Froemming, G.A. 2011. Anti-proliperative and antioxidant effects of Tinospora crispa (Batawali). Biomedical Research, 22(1): 57–62.
Ilaiyaraja, N. & Khanum, F. 2011. Antioxidant potential of Tinospora cordifolia extracts and their protective effect on oxidation of biomolecules. Pharmacognosy Journal, 3(20), 56–62. DOI: https://doi.org/10.5530/pj.2011.20.11
Irshad, M., Zafaryab, M., Singh, M. & Rizvi, M.M.A. 2012. Comparative analysis of the antioxidant activity of Cassia fistula extracts. International Journal of Medicinal Chemistry, 2012: 157125. DOI: https://doi.org/10.1155/2012/157125
Ismail, N.H., Osman, K., Zulkefli, A.F., Mokhtar, M.H. & Ibrahim, S.F. 2021. The physicochemical characteristics of gelam honey and its outcome on the female reproductive tissue of sprague-dawley rats: A preliminary study. Molecules, 26(11): 33466. DOI: https://doi.org/10.3390/molecules26113346
Jaiswal, S.G., Patel, M., Saxena, D.K. & Naik, S.N. 2014. Antioxidant properties of piper betel (L.) leaf extracts from six different geographical domain of India. Journal of Bioresource Engineering and Technology, 2(2): 12–20.
Jones, D., Ormondroyd, G.O., Curling, S.F., Popescu, C.-M. & Popescu, M.-C. 2017. Chemical compositions of natural fibres. In: Advanced High Strength Natural Fibre Composites in Construction M. Fan and C. Fu (Eds.). Elsevier. pp. 23–58. DOI: https://doi.org/10.1016/B978-0-08-100411-1.00002-9
Kalita, P., Tapan, B.K., Pal, T.K. & Kalita, R. 2013. Estimation of total flavonoids content (TFC) and anti oxidant activities of methanolic whole plant extract of Biophytum sensitivum Linn. Journal of Drug Delivery and Therapeutics, 3(4): 33–37. DOI: https://doi.org/10.22270/jddt.v3i4.546
Kumar, V. 2015. Antidyslipidemic and antioxidant activities of Tinospora cordifolia stem extract in alloxan induced diabetic rats. Indian Journal of Clinical Biochemistry, 30(4): 473–478. DOI: https://doi.org/10.1007/s12291-015-0485-1
Kumar, V., Singh, S., Singh, A., Dixit, A.K., Srivastava, B., Sidhu, G.K., Singh, R., Meena, A.K., Singh, R.P., Subhose, V. & Prakash, O. 2018. Phytochemical, antioxidant, antimicrobial, and protein binding qualities of hydro-ethanolic extract of Tinospora cordifolia. Journal of Biologically Active Products from Nature, 8(3): 192–200. DOI: https://doi.org/10.1080/22311866.2018.1485513
Lee, Y.J., Kim, D.B., Lee, J.S., Cho, J.H., Kim, B.K., Choi, H.S., Lee, B.Y. & Lee, O.H. 2013. Antioxidant activity and anti-adipogenic effects of wild herbs mainly cultivated in Korea. Molecules, 18(10): 12937–12950. DOI: https://doi.org/10.3390/molecules181012937
Liang, N. & Kitts, D. D. 2014. Antioxidant property of coffee components: Assessment of methods that define mechanism of action. Molecules, 19(11): 19180–19208. DOI: https://doi.org/10.3390/molecules191119180
Loo, A. Y., Jain, K. & Darah, I. 2008. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chemistry, 107(3): 1151–1160. DOI: https://doi.org/10.1016/j.foodchem.2007.09.044
Mendoza, N. & Silva, E.M.E. 2018. Introduction to phytochemicals: Secondary metabolites from plants with active principles for pharmacological importance. In: Phytochemicals - Source of Antioxidants and Role in Disease Prevention. InTech. DOI: https://doi.org/10.5772/intechopen.78226
Mfotie Njoya, E. 2021. Medicinal plants, antioxidant potential, and cancer. In: Cancer: Oxidative Stress and Dietary Antioxidants. V.R. Preedy & V.B. Patel (Eds.). Academic Press. pp. 349–357. DOI: https://doi.org/10.1016/B978-0-12-819547-5.00031-6
Michalkiewicz, S. 2013. Anodic oxidation of parabens in acetic acid-acetonitrile solutions. Journal of Applied Electrochemistry, 43(1): 85–97. DOI: https://doi.org/10.1007/s10800-012-0502-5
Murphy, K.J., Marques-Lopes, I. & Sánchez-Tainta, A. 2017. Cereals and legumes. In: The Prevention of Cardiovascular Disease Through the Mediterranean Diet. A. Sánchez-Villegas and A. Sánchez-Tainta (Eds.). Academic Press. pp. 111–132. DOI: https://doi.org/10.1016/B978-0-12-811259-5.00007-X
Nagababu, E., Rifkind, J.M., Boindala, S. & Nakka, L. 2010. Assessment of antioxidant activity of eugenol in vitro and in vivo. In: Free Radicals and Antioxidant Protocols. R.M. Uppu, S.N. Murthy, W.A. Pryor, N.L. Parinandi (Ed.). Springer. pp. 165–180. DOI: https://doi.org/10.1007/978-1-60327-029-8_10
Park, J.H., Lee, M. & Park, E. 2014. Antioxidant activity of orange flesh and peel extracted with various solvents. Preventive Nutrition and Food Science, 19(4): 291–298. DOI: https://doi.org/10.3746/pnf.2014.19.4.291
Richard, T., Temsamani, H., Cantos-Villar, E. & Monti, J.P. 2013. Application of LC-MS and LC-NMR techniques for secondary metabolite identification. Advances in Botanical Research, 67: 67–98). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-397922-3.00002-2
Sadeer, N.B., Montesano, D., Albrizio, S., Zengin, G. & Mahomoodally, M.F. 2020. The versatility of antioxidant assays in food science and safety—chemistry, applications, strengths, and limitations. Antioxidants, 9(8): 709. DOI: https://doi.org/10.3390/antiox9080709
SamLing, B.A., Assim, Z., Tong, W.Y., Leong, C.R., Ab Rashid, S., Nik Mohamed Kamal, N.N.S., Muhamad, M. & Tan, W.N. 2021. Cynometra cauliflora L.: An indigenous tropical fruit tree in Malaysia bearing essential oils and their biological activities. Arabian Journal of Chemistry, 14(9): 103302. DOI: https://doi.org/10.1016/j.arabjc.2021.103302
Santos, C.C.de M.P., Salvadori, M.S., Mota, V.G., Costa, L.M., de Almeida, A.A.C., de Oliveira, G.A.L., Costa, J.P., de Sousa, D.P., de Freitas, R.M. & de Almeida, R.N. 2013. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neuroscience Journal, 2013: 949452. DOI: https://doi.org/10.1155/2013/949452
Sarker, U. & Oba, S. 2019. Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Scientific Reports, 9(1): 20413. DOI: https://doi.org/10.1038/s41598-019-50977-5
Schalkwijk, C.G. & Stehouwer, C.D.A. 2020. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiological Reviews, 100(1): 407–461. DOI: https://doi.org/10.1152/physrev.00001.2019
Shah, R.K. & Yadav, R.N.S. 2015. Qualitative phytochemical analysis and estimation of total phenols and flavonoids in leaf extract of Sarcochlamys pulcherrima Wedd. Global Journal of Bio-Science and Biotechnology, 4(1): 81–84.
Singa, T.A., Okechukwu, P.N., Amit, Z.B., Ibrahim, M.J., Kapitonova, M. & Anisah Froemming, G.R. 2022. The ameliorating effects of Tinospora species on the formation of advanced glycation end-products (AGEs) and associated oxidative stress. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 14(3): 405–420. DOI: https://doi.org/10.5958/0975-6892.2022.00044.2
Siswadi, S. & Saragih, G.S. 2021. Phytochemical analysis of bioactive compounds in ethanolic extract of Sterculia quadrifida R.Br. AIP Conference Proceedings, 2353(May): 030098. DOI: https://doi.org/10.1063/5.0053057
Stanner, S. & Weichselbaum, E. 2012. Antioxidants. In: Encyclopedia of Human Nutrition. E. Caballero (Ed.). pp. pp. 88–99. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-375083-9.00013-1
Starowicz, M. & Zieliński, H. 2019. Inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in European cuisine. Antioxidants, 8(4): 100. DOI: https://doi.org/10.3390/antiox8040100
Tai, A., Sawano, T., Yazama, F. & Ito, H. 2011. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochimica et Biophysica Acta - General Subjects, 1810(2): 170–177. DOI: https://doi.org/10.1016/j.bbagen.2010.11.004
Terpinc, P., Polak, T., Šegatin, N., Hanzlowsky, A., Ulrih, N.P. & Abramovič, H. 2011. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chemistry, 128(1): 62–69. DOI: https://doi.org/10.1016/j.foodchem.2011.02.077
Thomas, A., Rajesh, E.K. & Kumar, D.S. 2016. The significance of Tinospora crispa in treatment of diabetes mellitus. Phytotherapy Research, 30(3): 357–366. DOI: https://doi.org/10.1002/ptr.5559
Tobgay, U., Boonyanuphong, P. & Meunprasertdee, P. 2020. Comparison of hot water and methanol extraction combined with ultrasonic pretreatment on antioxidant properties of two pigmented rice cultivars. Food Research, 4(2): 547–556. DOI: https://doi.org/10.26656/fr.2017.4(2).330
Ulewicz-Magulska, B. & Wesolowski, M. 2019. Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes. Plant Foods for Human Nutrition, 74(1): 61–67. DOI: https://doi.org/10.1007/s11130-018-0699-5
Waqas, K., Muller, M., Koedam, M., el Kadi, Y., Zillikens, M.C. & van der Eerden, B.C.J. 2022. Methylglyoxal – an advanced glycation end products (AGEs) precursor – Inhibits differentiation of human MSC-derived osteoblasts in vitro independently of receptor for AGEs (RAGE). Bone, 164: 116526. DOI: https://doi.org/10.1016/j.bone.2022.116526
Wojdyło, A., Oszmiański, J. & Czemerys, R. 2007. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3): 940–949. DOI: https://doi.org/10.1016/j.foodchem.2007.04.038
Zeb, A. 2020. Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9): e13394. DOI: https://doi.org/10.1111/jfbc.13394
Zulkefli, H.N., Mohamad, J. & Abidin, N.Z. 2013. Antioxidant activity of methanol extract of Tinospora crispa and Tabernaemontana corymbosa. Sains Malaysiana, 42(6): 697–706.
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission