Medium Optimization for Biobutanol Production From Palm Kernel Cake (PKC) Hydrolysate By Clostridium saccharoperbutylacetonicum N1-4


  • Muhd Arshad Amin Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Hafiza Shukor Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis; Malaysia Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis,02600 Arau, Perlis, Malaysia
  • Noor Fazliani Shoparwe Gold, Rare Earth & Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
  • Muaz Mohd Zaini Makhtar Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
  • Aidil Abdul Hamid Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Wichitpan Rongwong Biomass and oil palm center of excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand; School of Engineering and Technology, Walailak University, Nakhon Si Thammarat, 80160, Thailand


Biobutanol, Hydrolysate, Medium Optimization, Plackett-Burman Design, Palm Kernel Cake (PKC)


The study aims to optimize the medium composition for biobutanol production using a Palm Kernel Cake (PKC) hydrolysate by Clostridium saccharoperbutylacetonicum N1-4. Various nutrient factors affecting biobutanol production were screened using the Plackett-Burman design. These factors included: NH4NO3, KH2PO4, K2HPO4, MgSO4.7H2O, MnSO4.7H2O, FeSO4.7H2O, yeast extract, cysteine, PABA, biotin, and thiamin. The results were analyzed by an analysis of variance (ANOVA), which showed that cysteine (P=0.008), NH4NO3 (P=0.011) dan yeast extract (P=0.036) had significant effects on biobutanol production. The established model from the ANOVA analysis had a significant value of Pmodel>F = 0.0299 with an F-value of 32.82 which explains that the factors can explain in detail the variation in the data about the average and the interpretation is true with an R2 value of 0.993. The estimated maximum biobutanol production was 10.56 g/L, whereas the optimized medium produced 15.49 g/L of biobutanol. Process optimizations with optimum concentration of cysteine, NH4NO3, and yeast extract have produced 21.33 g/L biobutanol which is a 37.7% improvement from the non-optimized medium. The findings show that PKC hydrolysate with the addition of optimal concentrations of the three types of medium namely, cysteine (0.15 g/L), NH4NO3 (0.50 g/L), and yeast extract (1.5 g/L) during ABE fermentation, yielded a maximum biobutanol concentration of 21.33 g/L. Therefore, the results of this study provide good indications for promoting PKC hydrolysate as a new source of novel substrates with great potential in producing high biobutanol through ABE fermentation by C. saccharoperbutylacetonicum N1-4.


Download data is not yet available.


Metrics Loading ...


Abd-Alla, M.H. & Elsadek El-Enany, A.W. 2012. Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass and Bioenergy, 1(4): 172-178. DOI:

Al- Shorgani, N.K.N., Kalil, M.S. & Yusoff, W.M.W. 2012. Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess and Biosystem Engineering, 35(5): 817-826. DOI:

Al-Shorgani, N.K.N., Aidil Abdul Hamid, Hamid, A.A., Yusoff, W.M.W. & Kalil, M.S. 2013. Pre-optimization of medium for biobutanol production by a new isolate of solvent-producing Clostridium. BioResources, 4(5): 1420-1430. DOI:

Al-Shorgani, N.K.N., Shukor, H., Abdeshahian, P., Kalil, M.S., Wan Yusoff, W.M. & Abdul Hamid, A 2016. Enhanced butanol production by optimizing of medium parameters using Clostridium acetobutylicum YM1. Saudi Journal of Biological Sciences, 3(1): 1-8.

Alvarado-Cuevas, Z.D., Acevedo, L.G.O., Salas, J.T.O. & De León-Rodríguez, A. 2013. Nitrogen sources impact hydrogen production by Escherichia coli using cheese whey as substrate. New Biotechnology, 30(6): 586-590. DOI:

Ba-Abbad, M.M., Kadhum, A.A.H., Bakar Mohamad, A., Takriff, M.S. & Sopian, K. 2013. The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol-gel technique. Journal of Alloys and Compounds, 2(3): 63-70. DOI:

Bao, T., Feng, J., Jiang, W., Fu, H., Wang, J., & Yang, S.-T. 2020. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum. World Journal of Microbiology and Biotechnology, 1(6): 32-39. DOI:

Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S. & Escaleira, L.A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 7(5): 965-977. DOI:

Chen, X.C., Bai, J.X., Cao, J.M., Li, Z.J., Xiong, J., Zhang, L., Hong, Y. & Ying, H.-J. 2009. Medium optimization for the production of cyclic adenosine 3',5'-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresource Technology, 100(2): 919-924. DOI:

Chua, T.K., Liang, D.W., Qi, C., Yang, K.L. & He, J. 2013. Characterization of a butanol-acetone-producing Clostridium strain and identification of its solventogenic genes. Bioresource Technology, 1(5): 372-378. DOI:

de Moura, C., dos Reis, A.S., da Silva, L.D., de Lima, V. A., Oldoni, T.L.C., Pereira, C. & Carpes, S.T. 2018. Optimization of phenolic compounds extraction with antioxidant activity from açaí, blueberry and goji berry using response surface methodology. Emirates Journal of Food and Agriculture, 30(3): 180-189. DOI:

Ekpenyong, M.G., Antai, S.P., Asitok, A.D. & Ekpo, B.O. 2017. Plackett-burman design and response surface optimization of medium trace nutrients for glycolipopeptide biosurfactant production. Iranian Biomedical Journal, 21(4): 249-260. DOI:

Gottumukkala, L.D., Parameswaran, B., Valappil, S.K., Mathiyazhakan, K., Pandey, A. & Sukumaran, R.K. 2013. Biobutanol production from rice straw by a non-acetone producing Clostridium sporogenes BE01. Bioresource Technology, 1(5): 182-188. DOI:

Hanh, T.M.T., Cheirsilp, B., Umsakul, K. & Bourtoom, T. 2011. Response surface optimization for acetone-butanol-ethanol production from cassava starch by co-culture of Clostridium butylicum and Bacillus subtilis. Maejo International Journal of Science and Technology, 5(4): 374-389.

Kushwaha, D., Srivastava, N., Mishra, I., Upadhyay, S.N. & Mishra, P.K. 2019. Recent trends in biobutanol production. Reviews in Chemical Engineering, 7(4): 475-504. DOI:

Li, L., Ai, H., Zhang, S., Li, S., Liang, Z., Wu, Z., Yang, S. & Wang, J. 2013. Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresource Technology, 4(3): 397-404. DOI:

Li, R.D., Li, Y.Y., Lu, L.Y., Ren, C., Li, Y.X. & Liu, L. 2011. An improved kinetic model for the acetone-butanol-ethanol pathway of Clostridium acetobutylicum and model-based perturbation analysis. BMC Systems Biology, 5(2): 6-12. DOI:

Li, X., Li, Z., Zheng, J., Shi, Z. & Li, L. 2012. Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate, Bioresource Technology, 4(2): 43-51. DOI:

Ma, X., Yang, M., He, Y., Li, C. & Zhai, C. 2020. Plackett-Burman combined with Box-Behnken to optimize the medium of fermented tremella polysaccharide and compare the characteristics before and after optimization. Journal of Food Quality, 6(1): 4-16. DOI:

Md Razali, N.A.A., Ibrahim, M.F., Bahrin, E.K. & Abd-Aziz, S. 2018. Optimisation of simultaneous saccharification and fermentation (SSF) for biobutanol production using pre-treated oil palm empty fruit bunch. Molecules, 8(3): 3-9. DOI:

Oshiro, M., Hanada, K., Tashiro, Y. & Sonomoto, K. 2010. Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Applied Microbiology and Biotechnology, 3(9): 1177-1185. DOI:

Ouephanit, C., Virunanon, C., Burapatana, V. & Chulalaksananukul, W. 2011. Butanol and ethanol production from tapioca starch wastewater by Clostridium spp. Water Science and Technology, 4(5): 1774-1780. DOI:

Peabody, G.L. & Kao, K.C. 2016. Recent progress in biobutanol tolerance in microbial systems with an emphasis on Clostridium. FEMS Microbiology Letters, 2(7): 1-6.

Ranjan, A., Mayank, R. & Moholkar, V.S. 2013. Development of semi-defined rice straw-based medium for butanol production and its kinetic study. Biotech, 3(5): 353-364. DOI:

Razak, M.N.A., Ibrahim, M.F., Yee, P.L., Hassan, M.A. & Abd-Aziz, S. 2013. Statistical optimization of biobutanol production from oil palm decanter cake hydrolysate by Clostridium acetobutylicum ATCC 824. BioResources, 8(2): 1758-1770. DOI:

Sharma, K. M., Kumar, R., Panwar, S. & Kumar, A. 2017. Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology, 15(1): 23-38. DOI:

Shukor, H., Abdeshahian, P., Al-Shorgani, N.K.N., Hamid, A.A., Rahman, N.A. & Kalil, M.S. 2016. Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol. Bioresource Technology, 4(8): 257-264. DOI:

Shukor, H., Abdeshahian, P., Al-Shorgani, N.K.N., Hamid, A.A., Rahman, N.A. & Kalil, M.S. 2016. Saccharification of polysaccharide content of palm kernel cake using enzymatic catalysis for production of biobutanol in acetone-butanol-ethanol fermentation. Bioresource Technology, 20(2): 5-10. DOI:

Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M. & Tripathi, C.K.M. 2017. Strategies for fermentation medium optimization: An in-depth review. Frontiers in Microbiology, 7(1): 12-18. DOI:

Soumya, P.S., Lakshmi, M.S.K. & Nambisan, P. 2016. Application of response surface methodology for the optimization of laccase production from Pleurotus ostreatus by solid state fermentation on pineapple leaf substrate. Journal of Scientific and Industrial Research, 3(5): 306-314.

Survase, S.A., Van Heiningen, A. & Granström, T. 2012. Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792. Applied Microbiology and Biotechnology, 93(6): 2309-2316. DOI:

Tudela, J., Martínez, M., Valdivia, R., Romo, J., Portillo, M. & Rangel, R. 2010. Nature, 9(2): 539-547.

Vishwanatha, K.S., Rao, A.G.A. & Singh, S.A. 2010. Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: Optimization of process parameters. Journal of Industrial Microbiology and Biotechnology, 37(2): 129-138. DOI:

Zheng, J., Tashiro, Y., Yoshida, T., Gao, M., Wang, Q. & Sonomoto, K. 2013. Continuous butanol fermentation from xylose with high cell density by cell recycling system. Bioresource Technology, 12(9): 360-365. DOI:



How to Cite

Amin, M. A., Shukor, H., Shoparwe, N. F., Makhtar, M. M. Z., Abdul Hamid, A., & Rongwong, W. (2024). Medium Optimization for Biobutanol Production From Palm Kernel Cake (PKC) Hydrolysate By Clostridium saccharoperbutylacetonicum N1-4. Malaysian Applied Biology, 53(1), 67–81.



Research Articles

Funding data