Effects of Dietary Oil Palm Carotenes on Colour Intensity and Astaxanthin Content in Giant Freshwater Prawn (Macrobrachium rosenbergii)
Keywords:
Astaxanthin, body colour, carotenoids, giant freshwater prawn, oil palm caroteneAbstract
Prawns have the metabolic ability to convert dietary carotenoids, such as beta-carotene, into astaxanthin, which increases the colour intensity and boosts immunity, thereby improving prawn growth performance. Currently, prawn feed manufacturers are using expensive synthetic astaxanthin as a feed supplement, which leads to higher feed costs. Oil palm carotene can be used in prawn feed production to replace the commercial synthetic astaxanthin in the market. A study was conducted to evaluate the effects of dietary oil palm carotene on the colour intensity, total carotenoids, and astaxanthin content of giant freshwater prawns (Macrobrachium rosenbergii). Five different treatments that are isonitrogenous and isocaloric were used in this study, including T1 (commercial feed); T2 (control, without oil palm carotene); T3 (3% crude palm oil (CPO) inclusion); T4 (3% palm pressed fibre oil (PPFO) inclusion); and T5 (3% commercial oil palm-mixed carotene inclusion). Prawns were fed to satiation five times daily during the 10-week feeding trial. At the end of the feeding trial, prawn samples were collected for colour intensity, total carotenoids, and astaxanthin content analysis. The T4 and T5 prawn samples showed better colour intensity in terms of lightness in cooked samples as well as yellowness and redness for both raw and cooked samples. Prawns fed with diets consisting of oil palm carotenes (T3, T4 & T5) contained higher total carotenoids content (more than 40 ppm) and astaxanthin content (ranging from 14.65 to 16.96 ppm) than the commercial (T1) and control (T2) groups. These results indicate that supplementation of oil palm carotenes in the giant freshwater prawn can potentially replace expensive commercial synthetic astaxanthin that is practically used by aquaculture feed producers.
Downloads
Metrics
References
Akanda, M.J.H., Sarker, M.Z.I., Ferdosh, S., Mohd Yazid, A.M., Nik Norulaini, N.A.R. & Mohd Omar, A.K. 2012. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources. Molecules 17: 1764-1794. DOI: https://doi.org/10.3390/molecules17021764
Alam, M.M., Tikadar, K.K., Hasan, N.A., Akter, R., Bashar, A., Ahammad, A.K.S., Rahman, M.M., Alam, M.R. & Haque, M.M. 2022. Economic viability and seasonal impacts of integrated rice-prawn-vegetable farming on agricultural households in Southwest Bangladesh. Water, 14(17): 27-56. DOI: https://doi.org/10.3390/w14172756
Anon 2010. Annual Fisheries Statistics, 2009, Department of Fisheries, Ministry of Agriculture, Malaysia. p.188.
Cianci, M., Rizkallah, P.J., Olczak, A., Raftery, J., Chayen, N.E., Zagalsky, P.F. & Helliwell, J.R. 2002. The molecular basis of the coloration mechanism in lobster shell: β-Crustacyanin at 3.2-Å resolution. In: Proceedings of the National Academy of Sciences, Washington, 99. pp. 9795-9800. DOI: https://doi.org/10.1073/pnas.152088999
Darachai, P., Limpawattana, M., Hawangjoo, M. & Klaypradit, W. 2019. Effects of shrimp waste types and their cooking on properties of extracted astaxanthin and its characteristics in liposomes. Journal of Food and Nutrition Research, 7(7): 530-536. DOI: https://doi.org/10.12691/jfnr-7-7-7
Fawzy, S., Wang, W., Zhou, Y., Xue, Y., Yi, G., Wu, M. & Huang, X. 2022. Can dietary β-carotene supplementation provide an alternative to astaxanthin on the performance of growth, pigmentation, biochemical, and immuno-physiological parameters of Litopenaeus vannamei? Aquaculture Reports, 23: 1-11. DOI: https://doi.org/10.1016/j.aqrep.2022.101054
Grune, T., Lietz, G., Palou, A., Ross, A.C., Stahl, W., Tang, G., Thurnham, D., Yin, S. & Biesalski, H.K. 2010. Journal of Nutrition, 140(12): 2268-2285. DOI: https://doi.org/10.3945/jn.109.119024
Hu, J., Lu, W., Mei, L., Wang, Y., Ding, R. & Wang, L. 2019. Extraction and purification of astaxanthin from shrimp shells and the effects of different treatment on its content. Brazilian Journal of Pharmacognosy, 29: 24-29. DOI: https://doi.org/10.1016/j.bjp.2018.11.004
Kenari, A.A., Mozanzadeh, M.T. & Pourgholam, R. 2011. Effects of total fish oil replacement to vegetable oils at two dietary lipid levels on the growth, body composition, haemato-immunological and serum biochemical parameters in caspian brown trout (Salmo trutta caspius). Aquaculture, 42(8): 1131-1144. DOI: https://doi.org/10.1111/j.1365-2109.2010.02701.x
Khan, M.A., Guttormsen, A. & Roll, K.H. 2018. Production risk of pangas (Pangasius hypophthalmus) fish farming. Aquaculture Economics & Management, 22(2): 192-208. DOI: https://doi.org/10.1080/13657305.2017.1284941
Kim, Y.C., Romano, N., Lee, K.S., Teoh, C.Y. & and Ng, W.K. 2013. Effects of replacing dietary fish oil and squid liver oil with vegetable oils on growth, tissue fatty acid profile and total carotenoids of the giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture Research, 44(11): 1731-1740. DOI: https://doi.org/10.1111/j.1365-2109.2012.03179.x
Lau C.Y. 2016. Current trend, science and challenges in palm carotenes and tocotrienols. Palm Oil Developments, 64: 11-13.
Maoka, T. 2020. Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1): 1-16. DOI: https://doi.org/10.1007/s11418-019-01364-x
Meyers, S.P. & Latscha, T. 1997. Carotenoids. In: Advances in world aquaculture. Crustacean Nutrition, 6: 164-193.
Misawa, N. 2010. Natural products structural diversity-I secondary metabolites: organization and biosynthesis. In: Comprehensive Natural Products II. Volume 1. pp. 733-753. DOI: https://doi.org/10.1016/B978-008045382-8.00009-5
Muriana, F.J.G., Ruiz-Gutierrez, V., Gallardo-Guerrero, M.L. & Mínguez- Mosquera, M.I. 1993. A study of the lipids and carotenoprotein in the prawn, Penaeus japonicus. Journal of Biochemistry 114(2): 223-229. DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a124158
New, M.B. & Valenti, W.C. 2000. Freshwater prawn culture: The farming of Macrobrachium rosenbergii. Blackwell Science, Oxford. 899 pp. DOI: https://doi.org/10.1002/9780470999554
New, M.B. 2005. Freshwater prawn farming: global status, recent research and a glance at the future. Aquaculture Research 36(3): 210-230. DOI: https://doi.org/10.1111/j.1365-2109.2005.01237.x
Ng, W.K. & Gibon, V. 2011. Palm oil and saturated fatty acid rich vegetable oils. In: Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds. G.M. Turchini, W.-K. Ng, D.R. Tocher (Eds.). CRC Press. DOI: https://doi.org/10.1201/9781439808634-c4
Ng, W.K. 2002. Potential of palm oil utilization in aquaculture feeds. Asia Pacific Journal of Clinical Nutrition, 11(7): 473-476. DOI: https://doi.org/10.1046/j.1440-6047.11.s.7.7.x
Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds. CRC Press, Taylor & Francis Group, USA. pp. 161-208.
Parisenti, J., Beirao, L.H., Mourino, J.L., Felipe do Nascimento Vieira, F.N., Buglione, C.C. & Maraschim, M. 2011a. Effect of background colour on shrimp pigmentation. Boletim Do Instituto De Pesca, 37(2): 177-182.
Parisenti, J., Beirao, L.H., Tramonte, V.L.C.G., da Silva, F.O., Brito, C.C.S & Moreira, C.C. 2011b. Preference ranking of colour in raw and cooked shrimps. International Journal of Food Science and Technology, 46(12). DOI: https://doi.org/10.1111/j.1365-2621.2011.02781.x
Prodhan, M.M.H. & Khan, M.A. 2018. Management practice adoption and productivity of commercial aquaculture farms in selected areas of Bangladesh. Journal of the Bangladesh Agricultural University, 16(1): 111-116. DOI: https://doi.org/10.3329/jbau.v16i1.36491
Rubia, B. & Annie, C. 2016. Giant freshwater prawn Macrobrachium rosenbergii farming: A review on its current status and prospective in Malaysia. Journal of Aquaculture Research and Development 7(3): 1-5.
Smith, B.E., Hardy, R.W. & Torrissen, O.J., 1992. Synthetic astaxanthin deposition in pan-size coho salmon (Oncorhynchus kisutch). Aquaculture 104 (1-2): 105-119. DOI: https://doi.org/10.1016/0044-8486(92)90141-7
Sonia, M.C., Ana, I., Sara, R., Carlos, B & Barredo, J.L. 2021. Main carotenoids by microorganisms. Encyclopedia, 1(4): 1223-1245. DOI: https://doi.org/10.3390/encyclopedia1040093
Stachowiak B. & Szulc P. 2021. Astaxanthin for the food industry. Molecules, 26: 2666. DOI: https://doi.org/10.3390/molecules26092666
Su F., Huang B. & Liu J. 2018. The carotenoids of shrimps (Decapoda: Caridea and Dendrobranchiata) cultured in China. Journal of Crustaceans Biology, 38: 523-530. DOI: https://doi.org/10.1093/jcbiol/ruy049
Supamattaya, K., Kiriratnikom, S., Boonyaratpalin, M. & Borowitzka, L., 2005. Effect of a Dunaliella extract on growth performance, health condition, immune response and disease resistance in black tiger shrimp (Penaeus monodon). Aquaculture, 248(1): 207-216. DOI: https://doi.org/10.1016/j.aquaculture.2005.04.014
Tolasa, S., Cakli, S. & Ostermeyer, U. 2005. Determination of astaxanthin and canthaxanthin in salmonid. European Food Research and Technology, 221: 787-791. DOI: https://doi.org/10.1007/s00217-005-0071-5
Tume, R.K., Sikes, A.L., Tabrett, S. & Smith, D.M. 2009. Effect of background colour on the distribution of astaxanthin in black tiger prawn (Penaeus monodon): Effective method for improvement of cooked colour. Aquaculture 296: 129-135. DOI: https://doi.org/10.1016/j.aquaculture.2009.08.006
Velu, C.S., Czeczuga, B. & Munuswamy, N. 2003. Carotenoprotein complexes inentomostracan crustaceans (Streptocephalus dichotomus and Moina micrura). Comparative Biochemistry and Physiology 135: 35-42. DOI: https://doi.org/10.1016/S1096-4959(03)00053-8
Wang, Y., Yuen, K.H. & Ng, W.K. 2006. Deposition of tocotrienols and tocopherols in the tissues of red hybrid tilapia, Oreochromis sp., fed a tocotrienol rich fraction extracted from crude palm oil and its effects on lipid peroxidation. Aquaculture, 253(1-4): 583-591. DOI: https://doi.org/10.1016/j.aquaculture.2005.08.013
Weaver, R.J., Cobine, P.A. & Hill, G.E. 2018. On the bioconversion of dietary carotenoids to astaxanthin in the marine copepod, Tigriopus californicus. Journal of Plankton Research, 40(2): 142-150. DOI: https://doi.org/10.1093/plankt/fbx072
Weesie, R.J., Askin, D., Jansen, F.J.H.M., Groot, H.J.M. De, Lugtenburg, J. & Britton, G. 1995. Protein-chromophore interactions in α-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus a study by 13C magic angle spinning NMR. FEBS Letters, Heidelberg, 362: 34-38. DOI: https://doi.org/10.1016/0014-5793(95)00191-B
Whangchai, N., Ungsethaphand, T., Chitmanat, C., Mengumphan, K. & Uraiwan, S. 2007. Performance of giant freshwater prawn (Macrobrachium rosenbergii de Man) reared in earthen ponds beneath plastic film shelters. Chiang Mai Journal of Science, 34(1): 89-96.
Yap, S.C., Choo, Y.M., Ooi C.K., Ong A.S.H. & Goh S.H. 1991. Quantitative analysis of carotenes in the oil from different palm species. Elaeis, 3: 309-318.
Zhao, X., Wang, G., Liu, X., Guo, D., Chen, X., Liu, S., Bi, S., Lai, H., Zhu, J., Wang, H. & Li, G. 2022. Dietary supplementation of astaxanthin increased growth, colouration, the capacity of hypoxia and ammonia tolerance of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Reports, 23: 10193. DOI: https://doi.org/10.1016/j.aqrep.2022.101093
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission