Plants Wilt Disease of Red Leaf Lettuce (Lactuca sativa L.) After Colonized by Trichoderma longibrachiatum
Keywords:
Internal transcribed spacer, Lactuca sativa, lettuce, plant wilt disease, Trichoderma longibrachiatumAbstract
Trichoderma longibrachiatum rarely reported can cause disease in plants. The present study investigates the pathogenicity of T. longibrachiatum isolate UPMT14 on the red leaf lettuce (Lactuca sativa L.) plants grown in sterile soil under a controlled growth room environment. The fungal isolate was initially characterized morphologically as Trichoderma sp. and was then further characterized by (ITS) region sequencing and BLAST comparison identified as T. longibrachiatum. To observe the response of Trichoderma isolate UPMT14 when imposed on lettuce plants. The injection was made and repeated five times, and then the lettuce growth followed for 36 days. On day 36, the present study found that the red leaf lettuce plants expressed foliar symptoms that began as chlorotic, reduced plant height, reduced leaf length and diameter, wilt, and dried up before it collapsed at day 45 compared to untreated control lettuce plants. Microscopic observation on lettuce roots showed that the Trichoderma spores invading the root system by mass sporulation and spatial competition possibly impaired plant water uptake and eventually caused plant wilting. Therefore, this study indicates that T. longibrachiatum is among the causal agents of wilt disease in the lettuce plant.
Downloads
Metrics
References
Al-Rubaiey, W.L. & Al-Juboory, H.H. 2020. Molecular identification of Trichoderma longibrachiatum causing green mold in Pleurotus eryngii culture media. Plant Archives, 20(1): 181-184.
Aydoğdu, M., Kurbetli, İ., Kitapçı, A. & Sülü, G. 2020. Aggressiveness of green mould on cultivated mushroom (Agaricus bisporus) in Turkey. Journal of Plant Diseases and Protection, 127(5): 695-708. DOI: https://doi.org/10.1007/s41348-020-00328-8
Bakri, Y., Masson, M. & Thonart, P. 2010. Isolation and identification of two new fungal strains for xylanase production. Applied Biochemistry and Biotechnology, 162(6): 1626-1634. DOI: https://doi.org/10.1007/s12010-010-8944-x
Brown, A. & Smith, H. 2014. Benson's Microbiological Applications, Laboratory Manual in General Microbiology, Short Version. McGraw-Hill Education.
Chakraborty, B.N., Chakraborty, U., Saha, A., Dey, P.L. & Sunar, K. 2010. Molecular characterization of Trichoderma viride and Trichoderma harzianum isolated from soils of North Bengal based on rDNA markers and analysis of their PCR-RAPD profiles. Global Journal of Biotechnology & Biochemistry, 5(1): 55-61.
Colavolpe, M.B., Mejía, S.J. & Albertó, E. 2015. Efficiency of treatments for controlling Trichoderma spp. during spawning in cultivation of lignicolous mushrooms. Brazilian Journal of Microbiology, 45(4): 1263-1270. DOI: https://doi.org/10.1590/S1517-83822014000400017
DOA. 2018. Department of Agriculture Peninsular Malaysia (DOA). In: Crop Statistic (Food Crop Sub-Sector). p. 64.
dos Santos, J.L., Ribeiro, E.A., de Oliveira, R.S., Luz, J.H.D.S., Nunes, B.H.D.N., Oliveira, H.P.D., Sarmento, R.D.A., da Silva, R.R. & Chagas, A.F., 2021. Volatile organic compounds produced by Trichoderma sp. morphophysiologically altered maize growth at initial stages. Australian Journal of Crop Science, 15(2): 215-223. DOI: https://doi.org/10.21475/ajcs.21.15.02.p2605
Downes, F.P. & Ito, K. 2001. Compendium of Methods for the Microbiological Examination of Foods. Washington DC, USA: American Public Health Association. DOI: https://doi.org/10.2105/9780875531755
Habib Onsori, M.R.Z., Motallebi, M. & Zarghami, N. 2005. Identification of over producer strain of endo-b-1, 4-glucanase in Aspergillus species: Characterization of crude carboxymethyl cellulase. African Journal of Biotechnology, 4: 26-30.
Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. & Lorito, M. 2004. Trichoderma species-Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1): 43-56. DOI: https://doi.org/10.1038/nrmicro797
Hatvani, L., Antal, Z., Manczinger, L., Szekeres, A., Druzhinina, I.S., Kubicek, C.P., Nagy, A., Nagy, E., Vágvölgyi, C. & Kredics, L. 2007. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. PhytopathologyTM, 97(4): 532-537. DOI: https://doi.org/10.1094/PHYTO-97-4-0532
Hatvani, L., Sabolić, P., Kocsubé, S., Kredics, L., Czifra, D., Vágvölgyi, C., Kaliterna, J., Ivić, D., Đermić, E. & Kosalec, I. 2012. The first report on mushroom green mould disease in Croatia. Arhiv Za Higijenu Rada i Toksikologiju, 63(4): 481-486. DOI: https://doi.org/10.2478/10004-1254-63-2012-2220
Herath, H.H.M.A.U., Wijesundera, R.L.C., Chandrasekharan, N.V., Wijesundera, W.S.S. & Kathriarachchi, H.S. 2015. Isolation and characterization of Trichoderma erinaceum for antagonistic activity against plant pathogenic fungi. Current Research in Environmental & Applied Mycology, 5(2): 120-127. DOI: https://doi.org/10.5943/cream/5/2/5
Inglis, P. W. & Tigano, M. S. 2006. Identification and taxonomy of some entomopathogenic Paecilomyces spp. (Ascomycota) isolates using rDNA-ITS sequences. Genetics and Molecular Biology, 29, 132-136. DOI: https://doi.org/10.1590/S1415-47572006000100025
Innocenti, G., Roberti, R. & Piattoni, F. 2015. Biocontrol ability of Trichoderma harzianum strain T22 against Fusarium wilt disease on water-stressed lettuce plants. BioControl, 60(4): 573-581. DOI: https://doi.org/10.1007/s10526-015-9662-7
Jaklitsch, W.M. & Voglmayr, H. 2015. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Studies in Mycology, 80: 1-87. DOI: https://doi.org/10.1016/j.simyco.2014.11.001
Jang, S., Jang, Y., Kim, C.-W., Lee, H., Hong, J.-H., Heo, Y.M., Lee, Y.M., Lee, D.W., Lee, H.B. & Kim, J.-J. 2017. Five new records of soil-derived Trichoderma in Korea: T. albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum. Mycobiology, 45(1): 1-8. DOI: https://doi.org/10.5941/MYCO.2017.45.1.1
Joe, S. & Mapana, S.S. 2017. An efficient method of production of colloidal chitin for enumeration of chitinase producing bacteria. Journal of Sciences, 4(16): 37-45. DOI: https://doi.org/10.12723/mjs.43.4
Li Destri Nicosia, M.G., Mosca, S., Mercurio, R. & Schena, L. 2014. Dieback of Pinus nigra seedlings caused by a strain of Trichoderma viride. Plant Disease, 99(1): 44-49. DOI: https://doi.org/10.1094/PDIS-04-14-0433-RE
Lin, H., Travisano, M. & Kazlauskas, R. J. 2016. The fungus Trichoderma regulates submerged conidiation using the steroid pregnenolone. ACS Chemical Biology, 11(9): 2568-2575. DOI: https://doi.org/10.1021/acschembio.6b00376
Lunge, A.G. & Patil, A.S. 2012. Characterization of efficient chitinolytic enzyme producing Trichoderma species: A tool for better antagonistic approach. International Journal of Science, Environment and Technology, 1(5): 377-385.
MacFaddin, J.F. 2000. Biochemical Tests for Identification of Medical Bacteria. 3rd Edition. Lippincott Williams & Wilkins, Philadelphia. 527 pp.
Maharshi, A., Rashid, M.M., Teli, B., Yadav, S.K., Singh, D.P. & Sarma, B.K. 2021. Salt stress alters pathogenic behaviour of Fusarium oxysporum f. Sp. Ciceris and contributes to severity in chickpea wilt incidence. Physiological and Molecular Plant Pathology, 113: 101602. DOI: https://doi.org/10.1016/j.pmpp.2021.101602
Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., Chapman, J., Chertkov, O., Coutinho, P.M. & Cullen, D. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26(5): 553-560. DOI: https://doi.org/10.1038/nbt1403
Miyazaki, K., Tsuchiya, Y. & Okuda, T. 2009. Specific PCR assays for the detection of Trichoderma harzianum causing green mold disease during mushroom cultivation. Mycoscience, 50(2): 94-99. DOI: https://doi.org/10.1007/S10267-008-0460-2
Mumpuni, A., Sharma, H.S.S. & Brown, A.E. 1998. Effect of metabolites produced by Trichoderma harzianum biotypes and Agaricus bisporus on their respective growth Radii in Culture. Applied and Environmental Microbiology, 64(12): 5053-5056. DOI: https://doi.org/10.1128/AEM.64.12.5053-5056.1998
Patil, A.S., Patil, S.R. & Paikrao, H.M. 2016. Trichoderma secondary metabolites: Their biochemistry and possible role in disease management. In Microbial-mediated induced systemic resistance in plants. Springer, Cham. pp. 69-102. DOI: https://doi.org/10.1007/978-981-10-0388-2_6
Phookamsak, R., Hyde, K.D., Jeewon, R., Bhat, D.J., Jones, E.G., Maharachchikumbura, S.S., Raspe, O., Karunarathna, S.C., Wanasinghe, D.N. & Hongsanan, S. 2019. Fungal diversity notes 929-1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity, 95(1): 1-273. DOI: https://doi.org/10.1007/s13225-019-00421-w
Posada, F., Aime, M.C., Peterson, S.W., Rehner, S.A. & Vega, F.E. 2007. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111(6): 748-757. DOI: https://doi.org/10.1016/j.mycres.2007.03.006
Rahman, S.S.M.S.A., Zainudin, N.A.I.M. & Aziz, N.A.A. 2021. Evaluation of Trichoderma asperellum B1902 in controlling Fusarium Wilt of Cavendish Banana Cultivar. Sains Malaysiana, 50(9): 2549-2561. DOI: https://doi.org/10.17576/jsm-2021-5009-05
Rao, G.S., Reddy, N.R. & Surekha, C. 2015. Induction of plant systemic resistance in Legumes cajanus cajan, Vigna radiata, Vigna mungo against plant pathogens Fusarium oxysporum and alternaria alternata-a Trichoderma viride mediated reprogramming of plant defense mechanism. International Journal of Recent Scientific Research, 6: 4270-4280.
Recio, R., Meléndez-Carmona, M.Á., Martín-Higuera, M.C., Pérez, V., López, E., López-Medrano, F. & Pérez-Ayala, A. 2019. Trichoderma longibrachiatum: An unusual pathogen of fungal pericarditis. Clinical Microbiology and Infection, 25(5): 586-587. DOI: https://doi.org/10.1016/j.cmi.2019.02.006
Rodrigo-García, J., Navarrete-Laborde, B.A., Rosa, L.A. de la, Alvarez-Parrilla, E., Núñez-Gastélum, J.A., Rodrigo-García, J., Navarrete-Laborde, B.A., Rosa, L.A. de la, Alvarez-Parrilla, E. & Núñez-Gastélum, J.A. 2019. Effect of Harpin protein as an elicitor on the content of phenolic compounds and antioxidant capacity in two hydroponically grown lettuce (Lactuca sativa L.) varieties. Food Science and Technology, 39(1): 72-77. DOI: https://doi.org/10.1590/fst.20417
Samuels, G.J. 1996. Trichoderma: A review of biology and systematics of the genus. Mycological Research, 100(8): 923-935. DOI: https://doi.org/10.1016/S0953-7562(96)80043-8
Samuels, G.J., Dodd, S.L., Gams, W., Castlebury, L.A. & Petrini, O. 2002. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94(1): 146-170. DOI: https://doi.org/10.1080/15572536.2003.11833257
Sarsaiya, S., Jain, A., Jia, Q., Fan, X., Shu, F., Chen, Z., Zhou, Q., Shi, J. & Chen, J. 2020. Molecular identification of endophytic fungi and their pathogenicity evaluation against Dendrobium nobile and Dendrobium officinale. International Journal of Molecular Sciences, 21(1): 316. DOI: https://doi.org/10.3390/ijms21010316
Sarsaiya, S., Jia, Q., Fan, X., Jain, A., Shu, F., Chen, J., Lu, Y. & Shi, J. 2019. First report of leaf black circular spots on Dendrobium nobile caused by Trichoderma longibrachiatum in Guizhou Province, China. Plant Disease, 103(12): 3275. DOI: https://doi.org/10.1094/PDIS-03-19-0672-PDN
Schmoll, M., Esquivel-Naranjo, E.U. & Herrera-Estrella, A. 2010. Trichoderma in the light of day-physiology and development. Fungal Genetics and Biology, 47(11): 909-916. DOI: https://doi.org/10.1016/j.fgb.2010.04.010
Seidl, V., Seibel, C., Kubicek, C.P. & Schmoll, M. 2009. Sexual development in the industrial workhorse Trichoderma reesei. Proceedings of the National Academy of Sciences, 106(33): 13909-13914. DOI: https://doi.org/10.1073/pnas.0904936106
Shah, S., Nasreen, S. & Sheikh, P.A. 2012. Cultural and morphological characterization of Trichoderma spp. associated with green mold disease of Pleurotus spp. In Kashmir. Research Journal of Microbiology, 7(2): 139. DOI: https://doi.org/10.3923/jm.2012.139.144
Singh, S.K., Sharma, V.P., Sharma, S.R., Kumar, S. & Tiwari, M. 2006. Molecular characterization of Trichoderma taxa causing green mould disease in edible mushrooms. Current Science, 427-431.
Waghunde, R.R., Shelake, R.M. & Sabalpara, A.N. 2016. Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22): 1952-1965. DOI: https://doi.org/10.5897/AJAR2015.10584
Wang, G., Cao, X., Ma, X., Guo, M., Liu, C., Yan, L. & Bian, Y. 2016. Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China. Microbiologyopen, 5(4): 709-718. DOI: https://doi.org/10.1002/mbo3.364
Yu, Z., Wang, Z., Zhang, Y., Wang, Y. & Liu, Z. 2021. Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Microbiological Research, 242: 126596. DOI: https://doi.org/10.1016/j.micres.2020.126596
Yun, S.-H., Lee, S. H., So, K.-K., Kim, J.-M. & Kim, D.-H. 2016. Incidence of diverse dsRNA mycoviruses in Trichoderma spp. causing green mold disease of shiitake Lentinula edodes. FEMS Microbiology Letters, 363(19): fnw220. DOI: https://doi.org/10.1093/femsle/fnw220
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission