Enhanced Growth Performance and Steviol Glycosides Content in Stevia Rebaudiana Under Elevated Carbon Dioxide

https://doi.org/10.55230/mabjournal.v53i5.3026

Authors

  • A Abzar Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
  • Siti Zaharah Sakimin Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
  • Hawa ZE Jaafar Institute of Tropical Agriculture, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
  • Nor Elliza Tajidin Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Institute of Tropical Agriculture, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

Keywords:

climate change, rebaudioside, root fresh weight, stevioside, stomatal conductance, transpiration

Abstract

In the current climate-changing scenario with a steadily rising CO2 concentration, there is a chance that crop performance will be affected in terms of growth, yield, and quality. Therefore, an experiment was conducted in a glasshouse using a randomized complete block design with four replications to investigate the effect of short and long-term elevated CO2 on growth performance and chemical markers of Stevia rebaudiana Bertoni. The CO2 in the glasshouse was gradually elevated from 400 ppm to 1800 ppm weekly. The plants were exposed to elevated CO2 for four months (T1), two months (T2), and one month (T3), while the control plants (T4) were grown under ambient CO2 (aCO2) levels to assess the effect of elevated atmospheric carbon dioxide (eCO2) on stevia crop growth performance and steviol glycosides content. The number of branches per plant, plant height, number of leaves per branch, and plant biomass were found to be significantly increased under eCO2 treatment over aCO2 treatment. The eCO2 increased photosynthetic rate by 46% for T1, 45% for T2, and 29% for T3 over control plants (T4) at 3rd month of planting. The enhancement in photosynthesis is attributed to an increase in stevioside; with a 33% increase for T1 28.83% for T2 and 11% for T3 over aCO2. Similarly, the rebaudiosides A were also significantly increased by 32.8% for T1, 25% for T2, and 15% for T3 compared to the control under aCO2. Based on our findings, we concluded that eCO2 levels positively influenced the growth, biomass, and glycoside content by enhancing the physiological performance of Stevia rebaudiana Bertoni.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abzar, A., Ahmad, W.J.W., Said, M.N.M., Doni, F., Zaidan, M.W.A.M., Fathurahman, F. & Zain, C.R.C.M. 2018. Enhanced growth, yield and physiological characteristics of rice under elevated carbon dioxide. In AIP Conference Proceedings, 1940: 020064. DOI: https://doi.org/10.1063/1.5027979

Abzar, A., Said, M.N.M., Ahmad, W.J.W., Mohtar, W.Y.W., Doni, F., Fathurahman, F. & Zain, C.R.C.M. 2017. Elevated CO2 concentration enhances germination, seedling growth and vigor of rice. Ecology, Environment and Conservation, 23(3): 41-45.

Ahmad, J., Khan, I., Blundell, R., Azzopardi, J. & Mahomoodally, M.F. 2020. Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends in Food Science & Technology, 100: 177-189. DOI: https://doi.org/10.1016/j.tifs.2020.04.030

Ainsworth, E.A. & Rogers, A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment, 30(3): 258-270. DOI: https://doi.org/10.1111/j.1365-3040.2007.01641.x

Ainsworth, E.A. 2008. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology, 14(7): 1642-1650. DOI: https://doi.org/10.1111/j.1365-2486.2008.01594.x

Ainsworth, E.A. & Long, S.P. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2): 351-372. DOI: https://doi.org/10.1111/j.1469-8137.2004.01224.x

Aranjuelo, I., Erice, G., Sanz-Sáez, A., Abadie, C., Gilard, F., Gil-Quintana, E., Avice, J.C., Staudinger, C., Wienkoop, S., Araus, J.L., Bourguignon, J., Irigoyen, J.J. & Tcherkez, G. 2015. Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.). Plant, Cell & Environment, 38(12): 2780-2794. DOI: https://doi.org/10.1111/pce.12587

Azam, A., Khan, I., Mahmood, A. & Hameed, A. 2013. Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide. Journal of the Science of Food and Agriculture, 93(13): 3237-3244. DOI: https://doi.org/10.1002/jsfa.6165

Bowes, G. 1991. Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant, Cell & Environment, 14(8): 795-806. DOI: https://doi.org/10.1111/j.1365-3040.1991.tb01443.x

Boyer, J. S. 2015. Turgor and the transport of CO2 and water across the cuticle (epidermis) of leaves. Journal of Experimental Botany, 66(9): 2625-2633. DOI: https://doi.org/10.1093/jxb/erv065

Brearley, J., Venis, M. A. & Blatt, M. R. 1997. The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. Planta, 203: 145-154. DOI: https://doi.org/10.1007/s004250050176

Chang, S., Chang, T., Song, Q., Zhu, X.G. & Deng, Q. 2016. Photosynthetic and agronomic traits of an elite hybrid rice Y-Liang-You 900 with a record-high yield. Field Crops Research, 187: 49-57. DOI: https://doi.org/10.1016/j.fcr.2015.10.011

Cruz, M.M. 2015. Bibliographic review. Stevia rebaudiana (Bert.) Bertoni. A Revision. Cultivos Tropicales, 36(5): 5-15.

Degraaff, M.A., Vangroenigen, K.J., Six, J., Hungate, B. & van Kessel, C. 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology, 12(11): 2077-2091. DOI: https://doi.org/10.1111/j.1365-2486.2006.01240.x

Dong, J., Gruda, N., Lam, S. K., Li, X. & Duan, Z. 2018. Effects of elevated CO2 on nutritional quality of vegetables: A review. Frontiers in Plant Science, 9: 924. DOI: https://doi.org/10.3389/fpls.2018.00924

Doni, F., Zain, C.R.C.M., Isahak, A., Fathurrahman, F., Anhar, A., Mohamad, W.N.A.W. & Uphoff, N. 2018. A simple, efficient, and farmer-friendly Trichoderma-based biofertilizer evaluated with the SRI Rice Management System. Organic Agriculture, 8: 207-223. DOI: https://doi.org/10.1007/s13165-017-0185-7

Dusenge, M.E., Duarte, A.G. & Way, D.A. 2019. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221(1): 32-49. DOI: https://doi.org/10.1111/nph.15283

Engineer, C.B., Hashimoto-Sugimoto, M., Negi, J., Israelsson-Nordstrom, M., Azoulay-Shemer, T., Rappel, W.J., Iba, K. & Schroeder, J.I. 2016. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends in Plant Science, 21(1): 16-30. DOI: https://doi.org/10.1016/j.tplants.2015.08.014

Fernie, A. R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J. & DeLuca, V. 2011. Recommendations for reporting metabolite data. The Plant Cell, 23(7): 2477-2482. DOI: https://doi.org/10.1105/tpc.111.086272

Foyer, C.H. & Shigeoka, S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155(1): 93-100. DOI: https://doi.org/10.1104/pp.110.166181

Garcia-Plazaola, J.I., Hernandez, A. & Becerril, J.M. 2003. Antioxidant and pigment composition during autumnal leaf senescence in woody deciduous species differing in their ecological traits. Plant Biology, 5(05): 557-566. DOI: https://doi.org/10.1055/s-2003-44791

Gill, S.S. & Tuteja, N. 2010. Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior, 5(1): 26-33. DOI: https://doi.org/10.4161/psb.5.1.10291

Hanstein, S.M. & Felle, H.H. 2002. CO2-triggered chloride release from guard cells in intact fava bean leaves. Kinetics of the onset of stomatal closure. Plant Physiology, 130(2): 940-950. DOI: https://doi.org/10.1104/pp.004283

Ibrahim, M.H. & Jaafar, H.Z. 2017. Impact of carbon dioxide and increasing nitrogen levels on growth, photosynthetic capacity, carbohydrates and secondary metabolites in kacip fatimah (Labisia pumila). Annual Research & Review in Biology, 19(6): 1-16. DOI: https://doi.org/10.9734/ARRB/2017/36540

Jin, X., Zhang, X., Wu, Z., Teng, D., Zhang, X., Wang, Y., Wang, Z. & Li, C. 2009. Amphiphilic random glycopolymer based on phenylboronic acid: synthesis, characterisation, and potential as glucose-sensitive matrix. Biomacromolecules, 10(6): 1337-1345. DOI: https://doi.org/10.1021/bm8010006

Khiraoui, A., Hasib, A., Al Faiz, C., Amchra, F., Bakha, M. & Boulli, A. 2017. Stevia rebaudiana Bertoni (Honey Leaf): A magnificent natural bio-sweetener, biochemical composition, nutritional and therapeutic values. Journal of Natural Sciences Research, 7(14): 75-85.

Kinsman, E.A., Lewis, C., Davies, M.S., Young, J. E., Francis, D., Vilhar, B. & Ougham, H.J. 1997. Elevated CO2 stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata. Plant, Cell & Environment, 20(10): 1309-1316. DOI: https://doi.org/10.1046/j.1365-3040.1997.d01-21.x

Lamichaney, A. & Maity, A. 2021. Implications of rising atmospheric carbon dioxide concentration on seed quality. International Journal of Biometeorology, 65(6): 805-812. DOI: https://doi.org/10.1007/s00484-020-02073-x

Leakey, A.D., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P. & Ort, D.R. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60(10): 2859-2876. DOI: https://doi.org/10.1093/jxb/erp096

Lee, T.D., Tjoelker, M.G., Ellsworth, D.S. & Reich, P.B. 2001. Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist, 150(2): 405-418. DOI: https://doi.org/10.1046/j.1469-8137.2001.00095.x

Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L. & Ah-Hen, K. 2012. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132(3): 1121-1132. DOI: https://doi.org/10.1016/j.foodchem.2011.11.140

Long, S.P., Ainsworth, E.A., Rogers, A. & Ort, D.R. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology, 55: 591-628. DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141610

Long, S.P., Zhu, X.G., Naidu, S.L. & Ort, D.R. 2006. Can improvement in photosynthesis increase crop yields. Plant, cell & environment, 29(3): 315-330. DOI: https://doi.org/10.1111/j.1365-3040.2005.01493.x

Madan, S., Ahmad, S., Singh, G.N., Kohli, K., Kumar, Y., Singh, R. & Garg, M. 2010. Stevia rebaudiana (Bert.) Bertoni-A review. Indian Journal of Natural Products and Resources, 1(3): 267-286.

McDonald, E.P., Erickson, J.E. & Kruger, E.L. 2002. Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2. Functional Plant Biology, 29(9): 1115-1120. DOI: https://doi.org/10.1071/FP02007

Misra, H., Soni, M., Silawat, N., Mehta, D., Mehta, B.K. & Jain, D.C. 2011. Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats. Journal of Pharmacy and Bioallied Sciences, 3(2): 242. DOI: https://doi.org/10.4103/0975-7406.80779

Morelli, L. & Capurso, L. 2012. FAO/WHO guidelines on probiotics: 10 years later. Journal of Clinical Gastroenterology, 46, S1-S2. DOI: https://doi.org/10.1097/MCG.0b013e318269fdd5

Morgan, J.A., Milchunas, D.G., LeCain, D.R., West, M. & Mosier, A.R. 2007. Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the short grass steppe. Proceedings of the National Academy of Sciences, 104(37): 14724-14729. DOI: https://doi.org/10.1073/pnas.0703427104

Moroney, J.V., Jungnick, N., DiMario, R.J. & Longstreth, D.J. 2013. Photorespiration and carbon concentrating mechanisms: Two adaptations to high O2, low CO2 conditions. Photosynthesis Research, 117: 121-131. DOI: https://doi.org/10.1007/s11120-013-9865-7

Pal, P., AbuKashabeh, A., Al-Asheh, S. & Banat, F. 2015. Role of aqueous methyldiethanolamine (MDEA) as solvent in natural gas sweetening unit and process contaminants with probable reaction pathway. Journal of Natural Gas Science and Engineering, 24: 124-131. DOI: https://doi.org/10.1016/j.jngse.2015.03.007

Poorter, H. & Perez-Soba, M. 2002. Plant growth at elevated CO2. Encyclopedia of Global Environmental Change, 2: 489-496.

Prior, S.A., Runion, G.B., Marble, S.C., Rogers, H.H., Gilliam, C.H. & Torbert, H.A. 2011. A review of elevated atmospheric CO2 effects on plant growth and water relations: implications for horticulture. HortScience, 46(2): 158-162. DOI: https://doi.org/10.21273/HORTSCI.46.2.158

Prior, S.A., Watts, D.B., Arriaga, F.J., Runion, G.B., Torbert, H.A. & Rogers, H.H. 2010. Influence of elevated atmospheric CO2 and tillage practice on rainfall simulation. Conservation Agriculture Impacts–Local and Global, Volume(Issue): 83-88.

Rai, A., Mohanty, B. & Bhargava, R. 2016. Supercritical extraction of sunflower oil: A central composite design for extraction variables. Food Chemistry, 192: 647-659. DOI: https://doi.org/10.1016/j.foodchem.2015.07.070

Robredo, A., Perez-Lopez, U., Lacuesta, M., Mena-Petite, A. & Munoz-Rueda, A. 2010. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biologia Plantarum, 54(2): 285-292. DOI: https://doi.org/10.1007/s10535-010-0050-y

Rogers, M.J., Ji, X., Russell, R.G.G., Blackburn, G.M., Williamson, M.P., Bayless, A.V., Ebetino, F.H. & Watts, D.J. 1994. Incorporation of bisphosphonates into adenine nucleotides by amoebae of the cellular slime mould Dictyostelium discoideum. Biochemical Journal, 303(1): 303-311. DOI: https://doi.org/10.1042/bj3030303

Salvucci, M.E. & Crafts-Brandner, S.J. 2004. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiologia plantarum, 120(2): 179-186. DOI: https://doi.org/10.1111/j.0031-9317.2004.0173.x

Sanoubar, R., Cellini, A., Veroni, A. M., Spinelli, F., Masia, A., Vittori Antisari, L., Orsini, F. & Gianquinto, G. 2016. Salinity thresholds and genotypic variability of cabbage (Brassica oleracea L.) grown under saline stress. Journal of the Science of Food and Agriculture, 96(1): 319-330. DOI: https://doi.org/10.1002/jsfa.7097

Seneweera, S.P. & Conroy, J.P. 2005. Enhanced leaf elongation rates of wheat at elevated CO2: is it related to carbon and nitrogen dynamics within the growing leaf blade?. Environmental and Experimental Botany, 54(2): 174-181. DOI: https://doi.org/10.1016/j.envexpbot.2004.07.002

Seneweera, S.P., Ghannoum, O., Conroy, J.P., Ishimaru, K., Okada, M., Lieffering, M., Kim, H.Y. & Kobayashi, K. 2002. Changes in source–sink relations during development influence photosynthetic acclimation of rice to free air CO2 enrichment (FACE). Functional Plant Biology, 29(8): 947-955. DOI: https://doi.org/10.1071/PP01250

Shivanna, N., Naika, M., Khanum, F. & Kaul, V.K. 2013. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. Journal of Diabetes and its Complications, 27(2): 103-113. DOI: https://doi.org/10.1016/j.jdiacomp.2012.10.001

Singh, S.K. & Reddy, V.R. 2016. Methods of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO2. Physiologia Plantarum, 157(2): 234-254. DOI: https://doi.org/10.1111/ppl.12415

Sivaramanan, S. 2015. Global Warming and climate change, causes, impacts and mitigation. Central Environmental Authority, 2(4): 1-26.

Thilakarathna, S.M.C.R., Kirthisinghe, J.P., Gunathilaka, B.L. & Dissanayaka, D.M.P.V. 2015. Influence of gypsum application on yield and visual quality of groundnut (Arachis hypogaea L.) grown in Maspotha in Kurunegala district of Sri Lanka. Tropical Agricultural Research, 25(3): 432-436. DOI: https://doi.org/10.4038/tar.v25i3.8050

vanderKooi, C.J., Reich, M., Low, M., De Kok, L.J. & Tausz, M. 2016. Growth and yield stimulation under elevated CO2 and drought: A meta-analysis on crops. Environmental and Experimental Botany, 122: 150-157. DOI: https://doi.org/10.1016/j.envexpbot.2015.10.004

Vanheerden, P.D.R., Swanepoel, J.W. & Kruger, G.H.J. 2007. Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany, 61(2): 124-136. DOI: https://doi.org/10.1016/j.envexpbot.2007.05.005

Vazquez-Baxcajay, L., Robledo-Paz, A., Muratalla-Lua, A. & Conde-Martínez, V. 2014. Micropropagation of Stevia rebaudiana Bertoni, and steviosides detection. Bioagro, 26(1): 49-56.

Walker, A.P., De Kauwe, M.G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R.F. et al. 2021. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist, 229(5): 2413-2445. DOI: https://doi.org/10.1111/nph.16866

Wand, S.J., Midgley, G.F., Jones, M.H. & Curtis, P.S. 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology, 5(6): 723-741. DOI: https://doi.org/10.1046/j.1365-2486.1999.00265.x

Wang, S.Y. & Bunce, J.A. 2004. Elevated carbon dioxide affects fruit flavour in field-grown strawberries (Fragaria ananassa Duch). Journal of the Science of Food and Agriculture, 84(12): 1464-1468. DOI: https://doi.org/10.1002/jsfa.1824

Watanabe, H., Arai, F. & Okazaki, K. 2013. Role of CO2 in the CH4 oxidation and H2 formation during fuel-rich combustion in O2/CO2 environments. Combustion and Flame, 160(11): 2375-2385. DOI: https://doi.org/10.1016/j.combustflame.2013.05.022

Wood, A.J. & Roper, J. 2000. A simple & non-destructive technique for measuring plant growth & development. The American Biology Teacher, 62(3): 215-217. DOI: https://doi.org/10.2307/4450877

Yu, J., Chen, L., Xu, M. & Huang, B. 2012. Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature, drought stress, and the combined stresses. Crop Science, 52(4): 1848-1858. DOI: https://doi.org/10.2135/cropsci2012.01.0030

Zhang, L., Wu, D., Shi, H., Zhang, C., Zhan, X. & Zhou, S. 2011. Effects of elevated CO2 and N addition on growth and N2 fixation of a legume subshrub (Caragana microphylla Lam.) in temperate grassland in China. PLoS ONE, 6(10): 26842. DOI: https://doi.org/10.1371/journal.pone.0026842

Zhang, X., Wollenweber, B., Jiang, D., Liu, F. & Zhao, J. 2008. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. Journal of Experimental Botany, 59(4): 839-848. DOI: https://doi.org/10.1093/jxb/erm364

Zheng, Y., Li, F., Hao, L., Yu, J., Guo, L., Zhou, H., Ma, C. & Xu, M. 2019. Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biology, 19: 255. DOI: https://doi.org/10.1186/s12870-019-1788-9

Zinta, G., AbdElgawad, H., Domagalska, M. A., Vergauwen, L., Knapen, D., Nijs, I., janssens, I. A., Beemster, G.T.S & Asard, H. 2014. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organisational levels. Global Change Biology, 20(12): 3670-3685. DOI: https://doi.org/10.1111/gcb.12626

Ziska, L.H. 2003. Evaluation of yield loss in field sorghum from a C3 and C4 weed with increasing CO2. Weed Science, 51(6): 914-918. DOI: https://doi.org/10.1614/WS-03-002R

Published

30-11-2024

How to Cite

Abzar, A., Sakimin, S. Z. ., Jaafar, H. Z., & Tajidin, N. E. (2024). Enhanced Growth Performance and Steviol Glycosides Content in Stevia Rebaudiana Under Elevated Carbon Dioxide. Malaysian Applied Biology, 53(5), 35–48. https://doi.org/10.55230/mabjournal.v53i5.3026

Funding data