Effect of Auxins on Growth Enhancement of Cell Suspension Culture of Tongkat Ali Hitam (Polyalthia bullata)

https://doi.org/10.55230/mabjournal.v53i5.3044

Authors

  • Nurul Farhana Farezol Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia https://orcid.org/0009-0007-9286-8147
  • Munirah Adibah Kamarul Zaman Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia https://orcid.org/0009-0008-4177-8392
  • Azzreena Mohamad Azzeme Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Keywords:

Auxins, Cell growth, Cell suspension culture, Dry weight, Fresh weight, Polyalthia bullata

Abstract

Polyalthia bullata, a Southeast Asian plant, is valued for its bioactive compounds with pharmaceutical potential. To prevent overharvesting and extinction, cell suspension culture offers a sustainable method for the mass production of these compounds. Despite its effectiveness, no studies on Polyalthia bullata cell suspension culture have been established. Therefore, this study aimed to establish the culture by evaluating growth and biomass production. To achieve the objective, leaf derived callus of Polyalthia bullata was multiplied on Murashige and Skoog (MS) + 30 µM dicamba medium. Subsequently, cell suspension initiation and multiplication were carried out using half-strength MS basal medium (½ MSO) supplemented with 5, 15, 25, and 30 µM of 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), respectively. In this study, suspension cells in the ½ MSO recorded the highest increment in fresh (4.455 ± 1.170 g FW) and dry weight (0.220 ± 0.033 g DW) but produced dark brown cells. Meanwhile, cells grown on ½ MS medium supplemented with 30 µM NAA recorded the highest increase in fresh weight (3.472 ± 0.694 g FW) and dry weight (0.190 ± 0.012 g DW), displaying a light yellowish-brown cell. Although the ½ MSO yielded the highest biomass, the cell suspension cultures supplemented with 30 µM NAA showed promising results, achieving higher biomass compared to other auxin treatments and exhibiting a light yellowish-brown cell. This suggests that 30 µM NAA is a more efficient auxin utilization in reducing the occurrence of dark brown cells. In conclusion, optimizing auxin concentrations is crucial for high-quality Polyalthia bullata cell suspension culture. This study can provide insight into sustainable cultivation practices for the plant, serving as a potential bio-factory for mass-producing bioactive compounds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Chen, Y.C., Chia, Y.C. & Huang, B.M. 2021. Phytochemicals from Polyalthia species: Potential and implication on anti-oxidant, anti-inflammatory, anti-cancer, and chemoprevention activities. Molecules, 26(17): 5369. DOI: https://doi.org/10.3390/molecules26175369

Damodaran, S. & Strader, L.C. 2019. Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Frontiers in Plant Science, 10: 851. DOI: https://doi.org/10.3389/fpls.2019.00851

Dias, D.A., Urban, S. & Roessner, U. 2012. A historical overview of natural products in drug discovery. Metabolites, 2(2): 303-336. DOI: https://doi.org/10.3390/metabo2020303

Farjaminezhad, R. & Garoosi, G. 2021. Improvement and prediction of secondary metabolites production under yeast extract elicitation of Azadirachta indica cell suspension culture using response surface methodology. AMB Express, 11: 43. DOI: https://doi.org/10.1186/s13568-021-01203-x

Farjaminezhad, R., Zare, N., Zakaria, R. A. & Farjaminezhad, M. 2013. Establishment and optimization of cell growth in suspension culture of Papaver bracteatum: A biotechnology approach for thebaine production. Turkish Journal of Biology, 37: 689–697. DOI: https://doi.org/10.3906/biy-1304-54

Frick, E.M. & Strader, L.C. 2017. Roles for IBA-derived auxin in plant development. Journal of Experimental Botany, 69(2): 169–177. DOI: https://doi.org/10.1093/jxb/erx298

Gonçalves, S. & Romano, A. 2018. Production of plant secondary metabolites by using biotechnological tools. In: Secondary Metabolites-Sources and Applications. R. Vijayakumar and S. Raja (Eds.). IntechOpen, United Kingdom. pp. 81-99. DOI: https://doi.org/10.5772/intechopen.76414

Goyal, S., Vijaya, C., Kulkarni, Kulkarni, V. M. & Bhat, V. 2023. Plant regeneration through somatic embryogenesis in cell suspensions of Cenchrus ciliaris L. Plant Methods, 19: 110. DOI: https://doi.org/10.1186/s13007-023-01081-3

Harahap, D., Niaci, S., Mardina, V., Zaura, B., Qanita, I., Purnama, A., Puspita, K., Rizki, D. R. & Iqhrammullah, M. 2022. Antibacterial activities of seven ethnomedicinal plants from family Annonaceae. Journal of Advanced Pharmaceutical Technology & Research, 13(3): 148-153. DOI: https://doi.org/10.4103/japtr.japtr_111_22

Isah, T., Umar, S., Mujib, A., Sharma, M.P., Rajasekharan, P.E., Zafar, N. & Frukh, A. 2018. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield. Plant Cell, Tissue and Organ Culture (PCTOC), 132: 239-265. DOI: https://doi.org/10.1007/s11240-017-1332-2

Jing, H., Wilkinson, E.G., Sageman-Furnas, K. & Strader, L.C. 2023. Auxin and abiotic stress responses. Journal of Experimental Botany, 74(22): 7000–7014. DOI: https://doi.org/10.1093/jxb/erad325

Jothy, S.L., Yeng, C. & Sasidharan, S. 2013. Chromatographic and spectral fingerprinting of Polyalthia longifolia, a source of phytochemicals. BioResources, 8(4): 5102-5119. DOI: https://doi.org/10.15376/biores.8.4.5102-5119

Kamarul Zaman, M.A., Azzeme, A.M., Ramle, I.K., Normanshah, N., Ramli, S.N., Shaharuddin, N.A., Ahmad, S. & Abdullah, S.N.A. 2020. Induction, multiplication, and evaluation of antioxidant activity of Polyalthia bullata callus, a woody medicinal plant. Plants, 9(12): 1772. DOI: https://doi.org/10.3390/plants9121772

Khalid, A. & Aftab, F. 2020. Effect of exogenous application of IAA and GA3 on growth, protein content, and antioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. In vitro Cellular & Developmental Biology – Plant, 56: 377–389. DOI: https://doi.org/10.1007/s11627-019-10047-x

Krishnan, J.J., Gangaprasad, A. & Satheeshkumar, K. 2019. Biosynthesis of camptothecin from callus and cell suspension cultures of Ophiorrhiza mungos L. var. angustifolia (Thw.) Hook. f. Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 89: 893–902. DOI: https://doi.org/10.1007/s40011-018-1003-z

Lattanzio, V. 2019. Relationship of phenolic metabolism to growth in plant and cell cultures under stress. In: Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. K. Ramawat, H. Ekiert and S. Goyal (Eds.). Springer, Cham. pp. 1-32. DOI: https://doi.org/10.1007/978-3-030-11253-0_8-1

Leyser, O. 2017. Auxin signaling. Plant Physiology, 176(1): 465–479. DOI: https://doi.org/10.1104/pp.17.00765

Majda, M. & Robert, S. 2018. The role of auxin in cell wall expansion. International Journal of Molecular Sciences, 19(4): 951. DOI: https://doi.org/10.3390/ijms19040951

Mamdouh, D. & Smetanska, I. 2022. Optimization of callus and cell suspension cultures of Lycium schweinfurthii for improved production of phenolics, flavonoids, and antioxidant activity. Horticulturae, 8(5): 394. DOI: https://doi.org/10.3390/horticulturae8050394

Mansoor, S., Wani, O.A., Lone, J.K., Manhas, S., Kour, N., Alam, P., Ahmad, A. & Ahmad, P. 2022. Reactive oxygen species in plants: From source to sink. Antioxidants, 11(2): 225. DOI: https://doi.org/10.3390/antiox11020225

Moscatiello, R., Baldan, B. & Navazio, L. 2013. Plant Cell Suspension Cultures. In: Plant Mineral Nutrients. Methods in Molecular Biology. F. Maathuis (Eds.). Humana Press, Totowa, NJ. pp. 77-93. DOI: https://doi.org/10.1007/978-1-62703-152-3_5

Motolinía-Alcántara, E.A., Castillo-Araiza, C.O., Rodríguez-Monroy, M., Román-Guerrero, A. & Cruz-Sosa, F. 2021. Engineering considerations to produce bioactive compounds from plant cell suspension culture in bioreactors. Plants, 10(12): 2762. DOI: https://doi.org/10.3390/plants10122762

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3): 473–497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Murthy, H.N., Lee, EJ. & Paek, K.Y. 2014. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture (PCTOC), 118: 1–16. DOI: https://doi.org/10.1007/s11240-014-0467-7

Nagella, P. & Murthy, H.N. 2010. Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresource Technology, 101(17): 6735–6739. DOI: https://doi.org/10.1016/j.biortech.2010.03.078

Nguyen, H.T.H., Umemura, K. & Kawano, T. 2016. Indole-3-acetic acid-induced oxidative burst and an increase in cytosolic calcium ion concentration in rice suspension culture. Bioscience, Biotechnology, and Biochemistry, 80(8): 1546–1554. DOI: https://doi.org/10.1080/09168451.2016.1179094

Özyiğit, İ.İ., Doğan, İ., Hocaoğlu-Özyiğit, A., Yalçın, B., Erdoğan, A., Yalçın, İ.E., Cabi, E. & Kaya, Y. 2023. Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14: 1132555. DOI: https://doi.org/10.3389/fpls.2023.1132555

Paarakh, P.M. & Khosa, R.L. 2009. Phytoconstituents from the genus Polyalthia-a review. Journal of Pharmacy Research, 2(4): 594-605.

Pasternak, T. P., & Steinmacher, D. 2024. Plant growth regulation in cell and tissue culture in vitro. Plants, 13(2): 327. DOI: https://doi.org/10.3390/plants13020327

Perviz, S., Khan, H. & Pervaiz, A. 2016. Plant alkaloids as an emerging therapeutic alternative for the treatment of depression. Frontiers in Pharmacology, 7: 28. DOI: https://doi.org/10.3389/fphar.2016.00028

Pinto, E.L. 2023. Establishment of cell suspension culture of Polyalthia bullata for alkaloid production (Bachelor). Universiti Putra Malaysia.

Pratyusha, S. 2022. Phenolic compounds in the plant development and defense: An overview. In: Plant Stress Physiology - Perspectives in Agriculture Physiology. M. Hasanuzzaman & K. Nahar (Eds.). IntechOpen, United Kingdom. pp. 125-140. DOI: https://doi.org/10.5772/intechopen.102873

Shmarova, A.A., Terent’eva, O.A., Kaukhova, I. & Pivovarova, N.S. 2022. Plant cell suspension culture: modern approaches and problems in drug production (Review). Pharmaceutical Chemistry Journal, 56: 254–261. DOI: https://doi.org/10.1007/s11094-022-02628-9

Tan, S.H., Musa, R., Ariff, A. & Mahmood, M. 2010. Effect of plant growth regulators on callus, cell suspension and cell line selection for flavonoid production from Pegaga (Centella asiatica L. Urban). American Journal of Biochemistry and Biotechnology, 6(4): 284–299. DOI: https://doi.org/10.3844/ajbbsp.2010.284.299

Wang, S.H., Hu, Y.L., & Liu, T.X. 2019. Plant distribution and pharmacological activity of flavonoids. Traditional Medicine Research, 4(5): 269–287. DOI: https://doi.org/10.53388/TMR20190824131

Wang, S., Meng, X. & Dong, Y. 2017. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. International Journal of Oncology, 50(4): 1330–1340. DOI: https://doi.org/10.3892/ijo.2017.3890

Wei, W., Tao, J.J., Yin, C.C., Chen, S.Y., Zhang, J.S. & Zhang, W. K. 2022. Melatonin regulates gene expressions through activating auxin synthesis and signaling pathways. Frontiers in Plant Science, 13: 1057993. DOI: https://doi.org/10.3389/fpls.2022.1057993

Yao, L.J., Jalil, J., Attiq, A., Hui, C.C. & Zakaria, N.A. 2019. The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). Journal of Ethnopharmacology, 229: 303-325. DOI: https://doi.org/10.1016/j.jep.2018.10.001

Zakaria, R. A., Hour, M. H. & Zare, N. 2011. Callus production and regeneration of the medicinal plant Papaver orientale. African Journal of Biotechnology, 10(54): 11152–11156. DOI: https://doi.org/10.5897/AJB11.204

Zhang, Y., Yu, J., Xu, X., Wang, R., Liu, Y., Huang, S., Wei, H. & Wei, Z. 2022. Molecular mechanisms of diverse auxin responses during plant growth and development. International Journal of Molecular Sciences, 23(20): 12495. DOI: https://doi.org/10.3390/ijms232012495

Published

30-11-2024

How to Cite

Farezol, N. F. ., Kamarul Zaman , M. A. ., & Azzeme, A. M. (2024). Effect of Auxins on Growth Enhancement of Cell Suspension Culture of Tongkat Ali Hitam (Polyalthia bullata). Malaysian Applied Biology, 53(5), 49–61. https://doi.org/10.55230/mabjournal.v53i5.3044

Funding data