Effect of Auxins on Growth Enhancement of Cell Suspension Culture of Tongkat Ali Hitam (Polyalthia bullata)
Keywords:
Auxins, Cell growth, Cell suspension culture, Dry weight, Fresh weight, Polyalthia bullataAbstract
Polyalthia bullata, a Southeast Asian plant, is valued for its bioactive compounds with pharmaceutical potential. To prevent overharvesting and extinction, cell suspension culture offers a sustainable method for the mass production of these compounds. Despite its effectiveness, no studies on Polyalthia bullata cell suspension culture have been established. Therefore, this study aimed to establish the culture by evaluating growth and biomass production. To achieve the objective, leaf derived callus of Polyalthia bullata was multiplied on Murashige and Skoog (MS) + 30 µM dicamba medium. Subsequently, cell suspension initiation and multiplication were carried out using half-strength MS basal medium (½ MSO) supplemented with 5, 15, 25, and 30 µM of 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), respectively. In this study, suspension cells in the ½ MSO recorded the highest increment in fresh (4.455 ± 1.170 g FW) and dry weight (0.220 ± 0.033 g DW) but produced dark brown cells. Meanwhile, cells grown on ½ MS medium supplemented with 30 µM NAA recorded the highest increase in fresh weight (3.472 ± 0.694 g FW) and dry weight (0.190 ± 0.012 g DW), displaying a light yellowish-brown cell. Although the ½ MSO yielded the highest biomass, the cell suspension cultures supplemented with 30 µM NAA showed promising results, achieving higher biomass compared to other auxin treatments and exhibiting a light yellowish-brown cell. This suggests that 30 µM NAA is a more efficient auxin utilization in reducing the occurrence of dark brown cells. In conclusion, optimizing auxin concentrations is crucial for high-quality Polyalthia bullata cell suspension culture. This study can provide insight into sustainable cultivation practices for the plant, serving as a potential bio-factory for mass-producing bioactive compounds.
Downloads
Metrics
References
Chen, Y.C., Chia, Y.C. & Huang, B.M. 2021. Phytochemicals from Polyalthia species: Potential and implication on anti-oxidant, anti-inflammatory, anti-cancer, and chemoprevention activities. Molecules, 26(17): 5369. DOI: https://doi.org/10.3390/molecules26175369
Damodaran, S. & Strader, L.C. 2019. Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Frontiers in Plant Science, 10: 851. DOI: https://doi.org/10.3389/fpls.2019.00851
Dias, D.A., Urban, S. & Roessner, U. 2012. A historical overview of natural products in drug discovery. Metabolites, 2(2): 303-336. DOI: https://doi.org/10.3390/metabo2020303
Farjaminezhad, R. & Garoosi, G. 2021. Improvement and prediction of secondary metabolites production under yeast extract elicitation of Azadirachta indica cell suspension culture using response surface methodology. AMB Express, 11: 43. DOI: https://doi.org/10.1186/s13568-021-01203-x
Farjaminezhad, R., Zare, N., Zakaria, R. A. & Farjaminezhad, M. 2013. Establishment and optimization of cell growth in suspension culture of Papaver bracteatum: A biotechnology approach for thebaine production. Turkish Journal of Biology, 37: 689–697. DOI: https://doi.org/10.3906/biy-1304-54
Frick, E.M. & Strader, L.C. 2017. Roles for IBA-derived auxin in plant development. Journal of Experimental Botany, 69(2): 169–177. DOI: https://doi.org/10.1093/jxb/erx298
Gonçalves, S. & Romano, A. 2018. Production of plant secondary metabolites by using biotechnological tools. In: Secondary Metabolites-Sources and Applications. R. Vijayakumar and S. Raja (Eds.). IntechOpen, United Kingdom. pp. 81-99. DOI: https://doi.org/10.5772/intechopen.76414
Goyal, S., Vijaya, C., Kulkarni, Kulkarni, V. M. & Bhat, V. 2023. Plant regeneration through somatic embryogenesis in cell suspensions of Cenchrus ciliaris L. Plant Methods, 19: 110. DOI: https://doi.org/10.1186/s13007-023-01081-3
Harahap, D., Niaci, S., Mardina, V., Zaura, B., Qanita, I., Purnama, A., Puspita, K., Rizki, D. R. & Iqhrammullah, M. 2022. Antibacterial activities of seven ethnomedicinal plants from family Annonaceae. Journal of Advanced Pharmaceutical Technology & Research, 13(3): 148-153. DOI: https://doi.org/10.4103/japtr.japtr_111_22
Isah, T., Umar, S., Mujib, A., Sharma, M.P., Rajasekharan, P.E., Zafar, N. & Frukh, A. 2018. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield. Plant Cell, Tissue and Organ Culture (PCTOC), 132: 239-265. DOI: https://doi.org/10.1007/s11240-017-1332-2
Jing, H., Wilkinson, E.G., Sageman-Furnas, K. & Strader, L.C. 2023. Auxin and abiotic stress responses. Journal of Experimental Botany, 74(22): 7000–7014. DOI: https://doi.org/10.1093/jxb/erad325
Jothy, S.L., Yeng, C. & Sasidharan, S. 2013. Chromatographic and spectral fingerprinting of Polyalthia longifolia, a source of phytochemicals. BioResources, 8(4): 5102-5119. DOI: https://doi.org/10.15376/biores.8.4.5102-5119
Kamarul Zaman, M.A., Azzeme, A.M., Ramle, I.K., Normanshah, N., Ramli, S.N., Shaharuddin, N.A., Ahmad, S. & Abdullah, S.N.A. 2020. Induction, multiplication, and evaluation of antioxidant activity of Polyalthia bullata callus, a woody medicinal plant. Plants, 9(12): 1772. DOI: https://doi.org/10.3390/plants9121772
Khalid, A. & Aftab, F. 2020. Effect of exogenous application of IAA and GA3 on growth, protein content, and antioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. In vitro Cellular & Developmental Biology – Plant, 56: 377–389. DOI: https://doi.org/10.1007/s11627-019-10047-x
Krishnan, J.J., Gangaprasad, A. & Satheeshkumar, K. 2019. Biosynthesis of camptothecin from callus and cell suspension cultures of Ophiorrhiza mungos L. var. angustifolia (Thw.) Hook. f. Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 89: 893–902. DOI: https://doi.org/10.1007/s40011-018-1003-z
Lattanzio, V. 2019. Relationship of phenolic metabolism to growth in plant and cell cultures under stress. In: Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. K. Ramawat, H. Ekiert and S. Goyal (Eds.). Springer, Cham. pp. 1-32. DOI: https://doi.org/10.1007/978-3-030-11253-0_8-1
Leyser, O. 2017. Auxin signaling. Plant Physiology, 176(1): 465–479. DOI: https://doi.org/10.1104/pp.17.00765
Majda, M. & Robert, S. 2018. The role of auxin in cell wall expansion. International Journal of Molecular Sciences, 19(4): 951. DOI: https://doi.org/10.3390/ijms19040951
Mamdouh, D. & Smetanska, I. 2022. Optimization of callus and cell suspension cultures of Lycium schweinfurthii for improved production of phenolics, flavonoids, and antioxidant activity. Horticulturae, 8(5): 394. DOI: https://doi.org/10.3390/horticulturae8050394
Mansoor, S., Wani, O.A., Lone, J.K., Manhas, S., Kour, N., Alam, P., Ahmad, A. & Ahmad, P. 2022. Reactive oxygen species in plants: From source to sink. Antioxidants, 11(2): 225. DOI: https://doi.org/10.3390/antiox11020225
Moscatiello, R., Baldan, B. & Navazio, L. 2013. Plant Cell Suspension Cultures. In: Plant Mineral Nutrients. Methods in Molecular Biology. F. Maathuis (Eds.). Humana Press, Totowa, NJ. pp. 77-93. DOI: https://doi.org/10.1007/978-1-62703-152-3_5
Motolinía-Alcántara, E.A., Castillo-Araiza, C.O., Rodríguez-Monroy, M., Román-Guerrero, A. & Cruz-Sosa, F. 2021. Engineering considerations to produce bioactive compounds from plant cell suspension culture in bioreactors. Plants, 10(12): 2762. DOI: https://doi.org/10.3390/plants10122762
Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3): 473–497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Murthy, H.N., Lee, EJ. & Paek, K.Y. 2014. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture (PCTOC), 118: 1–16. DOI: https://doi.org/10.1007/s11240-014-0467-7
Nagella, P. & Murthy, H.N. 2010. Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresource Technology, 101(17): 6735–6739. DOI: https://doi.org/10.1016/j.biortech.2010.03.078
Nguyen, H.T.H., Umemura, K. & Kawano, T. 2016. Indole-3-acetic acid-induced oxidative burst and an increase in cytosolic calcium ion concentration in rice suspension culture. Bioscience, Biotechnology, and Biochemistry, 80(8): 1546–1554. DOI: https://doi.org/10.1080/09168451.2016.1179094
Özyiğit, İ.İ., Doğan, İ., Hocaoğlu-Özyiğit, A., Yalçın, B., Erdoğan, A., Yalçın, İ.E., Cabi, E. & Kaya, Y. 2023. Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14: 1132555. DOI: https://doi.org/10.3389/fpls.2023.1132555
Paarakh, P.M. & Khosa, R.L. 2009. Phytoconstituents from the genus Polyalthia-a review. Journal of Pharmacy Research, 2(4): 594-605.
Pasternak, T. P., & Steinmacher, D. 2024. Plant growth regulation in cell and tissue culture in vitro. Plants, 13(2): 327. DOI: https://doi.org/10.3390/plants13020327
Perviz, S., Khan, H. & Pervaiz, A. 2016. Plant alkaloids as an emerging therapeutic alternative for the treatment of depression. Frontiers in Pharmacology, 7: 28. DOI: https://doi.org/10.3389/fphar.2016.00028
Pinto, E.L. 2023. Establishment of cell suspension culture of Polyalthia bullata for alkaloid production (Bachelor). Universiti Putra Malaysia.
Pratyusha, S. 2022. Phenolic compounds in the plant development and defense: An overview. In: Plant Stress Physiology - Perspectives in Agriculture Physiology. M. Hasanuzzaman & K. Nahar (Eds.). IntechOpen, United Kingdom. pp. 125-140. DOI: https://doi.org/10.5772/intechopen.102873
Shmarova, A.A., Terent’eva, O.A., Kaukhova, I. & Pivovarova, N.S. 2022. Plant cell suspension culture: modern approaches and problems in drug production (Review). Pharmaceutical Chemistry Journal, 56: 254–261. DOI: https://doi.org/10.1007/s11094-022-02628-9
Tan, S.H., Musa, R., Ariff, A. & Mahmood, M. 2010. Effect of plant growth regulators on callus, cell suspension and cell line selection for flavonoid production from Pegaga (Centella asiatica L. Urban). American Journal of Biochemistry and Biotechnology, 6(4): 284–299. DOI: https://doi.org/10.3844/ajbbsp.2010.284.299
Wang, S.H., Hu, Y.L., & Liu, T.X. 2019. Plant distribution and pharmacological activity of flavonoids. Traditional Medicine Research, 4(5): 269–287. DOI: https://doi.org/10.53388/TMR20190824131
Wang, S., Meng, X. & Dong, Y. 2017. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. International Journal of Oncology, 50(4): 1330–1340. DOI: https://doi.org/10.3892/ijo.2017.3890
Wei, W., Tao, J.J., Yin, C.C., Chen, S.Y., Zhang, J.S. & Zhang, W. K. 2022. Melatonin regulates gene expressions through activating auxin synthesis and signaling pathways. Frontiers in Plant Science, 13: 1057993. DOI: https://doi.org/10.3389/fpls.2022.1057993
Yao, L.J., Jalil, J., Attiq, A., Hui, C.C. & Zakaria, N.A. 2019. The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). Journal of Ethnopharmacology, 229: 303-325. DOI: https://doi.org/10.1016/j.jep.2018.10.001
Zakaria, R. A., Hour, M. H. & Zare, N. 2011. Callus production and regeneration of the medicinal plant Papaver orientale. African Journal of Biotechnology, 10(54): 11152–11156. DOI: https://doi.org/10.5897/AJB11.204
Zhang, Y., Yu, J., Xu, X., Wang, R., Liu, Y., Huang, S., Wei, H. & Wei, Z. 2022. Molecular mechanisms of diverse auxin responses during plant growth and development. International Journal of Molecular Sciences, 23(20): 12495. DOI: https://doi.org/10.3390/ijms232012495
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Universiti Putra Malaysia
Grant numbers GP-IPS/2018/9630400