Enhanced Rice (Oryza sativa L.) Plant Growth and Nutrient Contents During The Vegetative Stage Through Zinc Solubilizing Bacterial Bead Inoculation
Keywords:
Acinetobacter sp., Oryza sativa L., sustainable approach, zinc-solubilizing bacteria, zinc deficiencyAbstract
Zinc-solubilizing bacteria (ZSB) can increase zinc bioavailability in soil and transform insoluble zinc into an accessible form, which helps reduce crop zinc deficiencies, simultaneously improving soil fertility and crop nutrition. The effects of two ZSB strains, Acinetobacter nosocomialis (SR R-10) and Acinetobacter seifertii (SR-12) were evaluated in the present study on the rice plant growth and nutrient contents using the bead inoculation method. A completely randomized design (CRD) was employed and four treatments were applied: 1) non-inoculated (control), 2) SR R-10 strain, 3) SR R-12 strain, and 4) mixed inoculation of SR R-10 and SR R-12 strains. After 40 days of sowing, the growth parameters were measured. The results revealed that SR R-10 inoculant enhanced the growth by producing the tallest plant (63.47 ± 1.87 cm) and longest root (19.93 ± 0.48 cm). SR R-10-treated plants also showed the highest leaf count (32 ± 0.58 leaves) and Soil Plant Analysis Development (SPAD) value (32.67 ± 1.59). The mixed inoculant showed synergistic benefits, indicated by the higher plant height, SPAD reading, and leaf count, compared to the non-inoculated treatment. SR R-10 and mixed inoculant increased plant biomass, measuring 4.67 ± 0.30 g and 4.40 ± 0.28 g, respectively, compared to non-inoculated plants (3.19 ± 0.17 g). For nutrient content, plants with SR R-10 inoculation showed the highest concentration of nitrogen (2.24 ± 0.00%), phosphorus (0.24 ± 0.00%), potassium (2.79 ± 0.03%), and zinc (59.51 ± 2.69 mg kg-1). Mixed inoculant also improved soil fertility by increasing the available Zn (6.17 mg kg-1) in the soil, however, it lowered the soil pH to pH 5.8. These findings highlight the potential of ZSB, particularly A. nosocomialis (SR R-10), to improve rice plant’s growth and nutritional quality and increase the bioavailability of zinc in the soil to promote sustainable agricultural practices.
Downloads
Metrics
References
Al-Busaidi A., Cookson P. & Yamamoto T. 2005. Methods of pH determination in calcareous soils: use of electrolytes and suspension effect. Australian Journal of Soil Research, 43: 541-545. DOI: https://doi.org/10.1071/SR04102
Alloway, B.J. 2008. Zinc in soils and crop nutrition. International Zinc Association and International Fertilizer Industry Association.
Banasode, C. & Channakeshava, S. 2022. Effect of zinc and boron application on fractions of zinc and boron in soils of paddy-cowpea cropping sequence. The Pharma Innovation Journal, 11(5): 1538–1543.
Bhatt, K. & Maheshwari, D.K. 2020. Zinc solubilizing bacteria (Bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3 Biotech, 10(2): 36. DOI: https://doi.org/10.1007/s13205-019-2033-9
Boguta, P. & Sokołowska, Z. 2020. Zinc Binding to Fulvic acids: Assessing the Impact of pH, Metal Concentrations and Chemical Properties of Fulvic Acids on the Mechanism and Stability of Formed Soluble Complexes. Molecules, 25: 1297. DOI: https://doi.org/10.3390/molecules25061297
Department of Agriculture Malaysia. 2018. Statistik Tanaman (Sub-Sektor Tanaman Makanan). URL https://www.doa.gov.my/index.php/pages/view/622?mid=239 (accessed 1.12.23).
Dinesh, R., Srinivasan, V., Hamza, S., Sarathambal, C., Anke Gowda, S.J., Ganeshamurthy, A.N., Gupta, S.B., Aparna Nair, V., Subila, K.P., Lijina, A. & Divya, V.C. 2018. Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, soil available Zn and plant Zn content. Geoderma, 321: 173–186. DOI: https://doi.org/10.1016/j.geoderma.2018.02.013
Fageria, N.K. & Santos, A.B. 2014. Requirement of micronutrients by lowland rice. Communications in Soil Science and Plant Analysis, 45(6): 844–863. DOI: https://doi.org/10.1080/00103624.2013.867050
Gandhi, A. & Muralidharan, G. 2016. Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. European Journal of Soil Biology, 76: 1–8. DOI: https://doi.org/10.1016/j.ejsobi.2016.06.006
Gandhi, A., Muralidharan, G., Sudhakar, E. & Murugan, A. 2014. Screening for elite zinc solubilizing bacterial isolate from rize rhizosphere environment. International Journal of Recent Scientific Research, 5(12): 2201–2204.
Gangloff, W.J., Westfall, D.G., Peterson, G.A. & Mortvedt, J.J. 2006. Mobility of organic and inorganic zinc fertilizers in soils. Communications in Soil Science and Plant Analysis, 37(1–2): 199–209. DOI: https://doi.org/10.1080/00103620500403200
Hafeez, B., Khanif, Y. M. & Saleem, M. 2013. Role of zinc in plant nutrition- A review. American Journal of Experimental Agriculture, 3(2): 374–391. DOI: https://doi.org/10.9734/AJEA/2013/2746
Hafeez, B., Khanif, Y.M., Saleem, M., Mastoi, M.I. & Gandahi, A.W. 2015. Zinc status of paddy soils of Malaysia in relation to some physico-chemcal properties. Pakistan Journal of Agriculture Agricultural Engineering and Veterinary Sciences, 31(1): 33–41.
Haroon, M., Khan, S.T. & Malik, A. 2022. Zinc-solubilizing bacteria: An option to increase zinc uptake by plants. In: Microbial Biofertilizers and Micronutrient Availability. S.T. Khan and A. Malik (Eds.). Springer, Cham. pp. 207–238. DOI: https://doi.org/10.1007/978-3-030-76609-2_11
Hou, W., Tränkner, M., Lu, J., Yan, J., Huang, S., Ren, T., Cong, R. & Li, X. 2020. Diagnosis of nitrogen nutrition in rice leaves influenced by potassium levels. Frontiers in Plant Science, 11: 165. DOI: https://doi.org/10.3389/fpls.2020.00165
Irsyad, S.R., Othman, N.M.I., Kee, Z.A. Tan, Nordin, S.A.S. 2023. Plant growth-promoting characterization of zinc-solubilizing bacteria from rice cultivation in Malaysia as a potential biofertilizer. Asia Pacific Journal of Science and Technology, 28(4): 1-9.
Izilan, N.I., Sari, N.A., Othman, N.M. & Mustaffha, S. 2022. The effects of biochar-compost on soil properties and plant growth performance grown in a sandy-loam soil. IOP Conference Series: Earth and Environmental Science, 1059. DOI: https://doi.org/10.1088/1755-1315/1059/1/012021
Jha, Y. 2019. The importance of zinc-mobilizing rhizosphere bacteria to the enhancement of physiology and growth parameters for Paddy under salt-stress conditions. Jordan Journal of Biological Sciences, 12(2): 167–173.
Jiang, H., Wang, T., Chi, X., Wang, M., Chen, N., Chen, M., Pan, L. & Qi, P. 2020. Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil. Geomicrobiology Journal, 37(2): 110–118. DOI: https://doi.org/10.1080/01490451.2019.1666195
Kamran, S., Shahid, I., Baig, D.N., Rizwan, M., Malik, K.A. & Mehnaz, S. 2017. Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Frontiers in Microbiology, 8: 2593. DOI: https://doi.org/10.3389/fmicb.2017.02593
Kandil, E.E., El-Banna, A.A.A., Tabl, D.M.M., Mackled, M.I., Ghareeb, R.Y., Al-Huqail, A.A., Ali, H.M., Jebril, J. & Abdelsalam, N.R. 2022. Zinc nutrition responses to agronomic and yield traits, kernel quality, and pollen viability in rice (Oryza sativa L.). Frontiers in Plant Science, 13: 1–19. DOI: https://doi.org/10.3389/fpls.2022.791066
Kaur, H. & Garg, N. 2021. Zinc toxicity in plants: a review. Planta, 253(6): 1–28. DOI: https://doi.org/10.1007/s00425-021-03642-z
Kushwaha, P., Srivastava, R., Pandiyan, K., Singh, A., Chakdar, H., Kashyap, P.L., Bhardwaj, A.K., Murugan, K., Karthikeyan, N., Bagul, S.Y., Srivastava, A.K. & Saxena, A.K. 2021. Enhancement in plant growth and zinc biofortification of chickpea (Cicer arietinum L.) by Bacillus altitudinis. Journal of Soil Science and Plant Nutrition, 2: 922 - 935. DOI: https://doi.org/10.1007/s42729-021-00411-5
Liu, D.Y., Zhang, W., Liu, Y.M., Chen, X.P. & Zou, C. Q. 2020. Soil application of zinc fertilizer increases maize yield by enhancing the kernel number and kernel weight of inferior grains. Frontiers in Plant Science, 11: 1–10. DOI: https://doi.org/10.3389/fpls.2020.00188
Mumtaz, M.Z., Ahmad, M., Jamil, M. & Hussain, T. 2017. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiological Research, 202: 51–60. DOI: https://doi.org/10.1016/j.micres.2017.06.001
Othman, N.M., Othman, R., Zuan, A.T., Shamsuddin, A.S., Zaman, N.B., Sari, N.A. & Panhwar, Q.A. 2022. Isolation, characterization, and identification of zinc-solubilizing bacteria (ZSB) from wetland rice fields in Peninsular Malaysia. Agriculture, 12(11): 1823. DOI: https://doi.org/10.3390/agriculture12111823
Pittol, M., Scully, E., Miller, D., Durso, L., Mariana Fiuza, L. & Valiati, V.H. 2018. Bacterial community of the rice floodwater using cultivation-independent approaches. International Journal of Microbiology, 1-13. DOI: https://doi.org/10.1155/2018/6280484
Rengel, Z. 2015. Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 15(2): 397–409. DOI: https://doi.org/10.4067/S0718-95162015005000036
Rocha, I., Ma, Y., Souza-Alonso, P., Vosátka, M., Freitas, H. & Oliveira, R.S. 2019. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Frontiers in Plant Science, 10: 1357. DOI: https://doi.org/10.3389/fpls.2019.01357
Rudani, K., Patel, V. & Prajapati, K. 2018. The importance of zinc in plant growth - A review. International Research Journal of Natural and Applied Sciences, 46(2): 2349–4077.
Rutkowska, B., Szulc, W., Bomze, K., Gozdowski, D. & Spychaj-Fabisiak, E. 2015. Soil factors affecting solubility and mobility of zinc in contaminated soils. International Journal of Environmental Science and Technology, 12(5): 1687–1694. DOI: https://doi.org/10.1007/s13762-014-0546-7
Sarkar, A., Islam, T., Biswas, G.C., Alam, S., Hossain, M. & Talukder, N.M. 2012. Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in Bangladesh. Acta Microbiologica et Immunologica Hungarica, 59(2): 199–213. DOI: https://doi.org/10.1556/amicr.59.2012.2.5
Shakeel, M., Rais, A., Hassan, M.N. & Hafeez, F.Y. 2015. Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Frontiers in Microbiology, 6: 1–12. DOI: https://doi.org/10.3389/fmicb.2015.01286
Shukla, A.K., Tiwari, P.K., Abhijit, P. & Chandra, P. 2016. Zinc and iron in soil, plant, animal and human health. Indian Journal of Fertilizers, 12(11): 133–149.
Sindhu, S S., Sharma, R., Sindhu, S. & Phour, M. 2019. Plant nutrient management through inoculation of zinc-solubilizing bacteria for sustainable agriculture. In: Biofertilizers for Sustainable Agriculture and Environment. B. Giri, R. Prasad, Q.S. Wu & A. Varma (Eds.). Biology, Springer Nature, Switzerland. pp. 173–201. DOI: https://doi.org/10.1007/978-3-030-18933-4_8
Singh B., Singh Y., Ladha J. K., Bronson K.F., Balasubramanian V., Singh J. & Khind, C.S. 2002. Chlorophyll meter–and leaf color chart–based nitrogen management for rice and wheat in northwestern India. Agronomy Journal, 94: 821–829. DOI: https://doi.org/10.2134/agronj2002.8210
Singh, S., Chhabra, R., Sharma, A. & Bisht, A. 2024. Harnessing the power of zinc-solubilizing bacteria: A catalyst for a sustainable agrosystem. Bacteria, 3(1): 15-29. DOI: https://doi.org/10.3390/bacteria3010002
Siti Anis Syaziana, N., Othman, N., Aida Soraya, S., Ali, T. & Musliyana, M. 2024. Isolation and characterization of encapsulated plant growth-promoting Enterobacter sp. SA10 for enhancing chili growth. Journal of King Saud University - Science, 36(6): 103197. DOI: https://doi.org/10.1016/j.jksus.2024.103197
Suganya, A., Saravanan, A. & Manivannan, N. 2020. Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Communications in Soil Science and Plant Analysis, 51(15): 2001–2021. DOI: https://doi.org/10.1080/00103624.2020.1820030
Sunitha, K., Padma, S.N., Vasandha, S. & Anitha, S. 2014. Microbial inoculants- a boon to zinc deficient constraints in plants : A review. International Journal of Scientific and Research Publications, 4(6): 4–7.
Vaid, S.K., Kumar, B., Sharma, A., Shukla, A.K. & Srivastava, P.C. 2014. Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. Journal of Soil Science and Plant Nutrition, 14(4): 889-910. DOI: https://doi.org/10.4067/S0718-95162014005000071
Vidyashree, D.N., Muthuraju, R., Panneerselvam, P. & Mitra, D. 2018. Organic acids production by zinc solubilizing bacterial isolates. International Journal of Current Microbiology and Applied Sciences, 7(10): 626–633. DOI: https://doi.org/10.20546/ijcmas.2018.710.070
Yasmin, R., Hussain, S., Rasool, M. H., Siddique, M.H. & Muzammil, S. 2021. Isolation, characterization of Zn solubilizing bacterium (Pseudomonas protegens RY2) and its contribution in growth of chickpea (Cicer arietinum L.) as deciphered by improved growth parameters and Zn content. Dose-response: A publication of International Hormesis Society, 19(3): 15593258211036791. DOI: https://doi.org/10.1177/15593258211036791
Zakaria, N.H., Zainuddin Z., Phang, I.C., Ibrahim, M.A., Abu Bakar, S.N.F., Nordin, M.S. 2017. Evaluation on field performance of vegetable soybean (Glycine max (L.) Merrill) varieties grown at two locations in Malaysia. Malaysian Applied Biology, 46(1): 125-129.
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2023/STG02/UITM/02/4