Biodegradation of Unpretreated Low-Density Polyethylene (LDPE) by Thermophiles Isolated from Paku Hot Springs water and sendiment, Sarawak Borneo, Malaysia
Biodegradation of LDPE plastic with thermophiles
Keywords:
bacteria, biodegradation, hot spring, low-density polyethylene, thermophilesAbstract
Plastic pollution has emerged as a significant environmental concern in nowadays, necessitating innovative solutions for its mitigation. Hot springs, while traditionally valued for their health and relaxation benefits, also present unique environments that may harbour thermophile bacteria species capable of degrading plastic polymers. The study aimed to screen thermophiles from Sarawak hot springs for the biodegradation of potential low-density polyethylene (LDPE) film and evaluate their efficiency in degrading the plastic in 30 days. Water and sediment samples were collected from each pond of the Paku hot spring in Sarawak Borneo, Malaysia in triplicate. The thermophiles were cultivated in an enriched medium supplemented with 0.5% (w/v) PE powder at 55°C for 5 days. Colony morphology and Gram staining were carried out. Screening of isolates for LDPE biodegradation was conducted using the BATH test, clear zone assay. Additionally, the efficiency of the isolates for 30 days of LDPE biodegradation was evaluated using the pH change, bacteria growth observation, and weight loss method. A total of 96 thermophilic isolates were cultured, 11 isolates exhibited hydrophobicity levels above 30%, and 7 isolates showed clear zone formation. After the biodegradation process, the pH was slightly decreased to pH 6.5. The bacteria colonies were Gram-positive (3) and Gram-negative (4) short rods. Isolates SPK(W)M1(1), SPK(SD)P1(2), and SPK(SD)P1(3) resulted in increased of growth (OD 0.06 ± 0.02, OD 0.08 ± 0.01, and OD 0.1 ± 0.02, respectively). The highest growth absorbance was shown by isolate SPK(SD)P1(3) while isolate SPK(W)M1(1) showed the highest LDPE film weight reduction of 10 % (0.45 ± 0.05 g). The thermophiles SPK(SD)P1(3) and SPK(W)M1(1) are potential to be used to biodegrade LDPE plastic. The preliminary study offers insight into microbial biodegradation mechanisms, further research and advanced sequencing techniques are necessary for a thorough analysis of the metabolic pathways involved.
Downloads
References
Abdullah, S., Maroof, L., Iqbal, M., Farman, S., Lubna, & Faisal, S. 2022. Biodegradation of low-density polyethylene (LDPE) bags by fungi isolated from waste disposal soil. Applied and Environmental Soil Science, 2022: 8286344. DOI: https://doi.org/10.1155/2022/8286344
Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A.A., Noman, M. Hameed, A., Manzoor, N., Manzoor, I. & Muhammad, S. 2018. Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25: 7287–7298. DOI: https://doi.org/10.1007/s11356-018-1234-9
Al-kahem Al-balawi, T.H., Wood, A.L., Solis, A., Cooper, T. & Barabote, R.D. 2017. Anoxybacillus sp. Strain UARK-01, a new thermophilic soil bacterium with hyperthermostable alkaline laccase activity. Current Microbiology, 74(6): 762–771. DOI: https://doi.org/10.1007/s00284-017-1239-5
Alvarez-Zeferino, J.C., Beltrán-Villavicencio, M. & Vázquez-Morillas, A. 2015. Degradation of plastics in seawater in laboratory. Open Journal of Polymer Chemistry, 05(04): 55–62. DOI: https://doi.org/10.4236/ojpchem.2015.54007
Al-Jailawi, M.H., Ameen, R. & Al-Saraf, A.A. 2015. Polyethylene degradation by Pseudomonas putida S3A. International Journal of Advanced Research in Biological Sciences, 2: 90–97.
Atanasova, N., Stoitsova, S., Paunova-Krasteva, T. & Kambourova, M. 2021. Plastic degradation by extremophilic bacteria. International Journal of Molecular Sciences, 22(11): 5610. DOI: https://doi.org/10.3390/ijms22115610
Awasthi, S., Srivastava, P., Singh, P., Tiwary, D. & Mishra, P.K. 2017. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech, 7: 1–10. DOI: https://doi.org/10.1007/s13205-017-0959-3
Balasubramanian, V., Natarajan, K. & Hemambika, B. 2010. High density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Letters in Applied Microbiology, 51: 205–211. DOI: https://doi.org/10.1111/j.1472-765X.2010.02883.x
Bonhomme, S., Cuer, A., Delort, A.-M., Lemaire, J., Sancelme, M. & Scott, G. 2003. Environmental biodegradation of polyethylene. Polymer Degradation and Stability, 81(3): 441–452. DOI: https://doi.org/10.1016/S0141-3910(03)00129-0
Charnock, C. 2021. A simple and novel method for the production of polyethylene terephthalate containing agar plates for the growth and detection of bacteria able to hydrolyze this plastic. Journal of Microbiological Methods, 185: 106222. DOI: https://doi.org/10.1016/j.mimet.2021.106222
Chatterjee, S., Roy, B., Roy, D. & Banerjee, R. 2010. Enzyme-mediated biodegradation of heat-treated commercial polyethylene by Staphylococcal species. Polymer Degradation and Stability, 95: 195–200. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.11.025
Dang, T.C.H., Nguyen, D.T., Thai, H., Nguyen, T.C., Hien Tran, T.T., Le, V.H., Nguyen, V.H., Tran, X.B., Thao Pham, T.P., Nguyen, T.G. & Nguyen, Q.T. 2018. Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(1): 015014. DOI: https://doi.org/10.1088/2043-6254/aaabaf
De Souza, G.M., Neto, E.R.D.S., da Silva, A.M., de Souza Iacia, M.V.M., Rodrigues, M.V.P., Pereira, V.C. & Winkelstroter, L.K. 2019. Comparative study of genetic diversity, virulence genotype, biofilm formation and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from nosocomial and community acquired urinary tract infections. Infection and Drug Resistance, 12: 3595–3606. DOI: https://doi.org/10.2147/IDR.S228612
Dey, A.S., Bose, H., Mohapatra, B. & Sar, P. 2020. Biodegradation of unpretreated low-density polyethylene (LDPE) by Stenotrophomonas sp. and Achromobacter sp., isolated from waste dumpsite and drilling fluid. Frontiers in Microbiology, 11: 603210. DOI: https://doi.org/10.3389/fmicb.2020.603210
Duddu, M.K., Tripura, K.L., Guntuku, G. & Divya, D.S. 2015. Biodegradation of low density polyethylene (LDPE) by a new biosurfactant-producing thermophilic Streptomyces coelicoflavus NBRC 15399T. African Journal of Biotechnology, 14(4): 327–340. DOI: https://doi.org/10.5897/AJB2014.14224
Farid, W., Masud, T., Sohail, A., Ahmad, N., Naqvi, S.M.S., Khan, S., Ali, A., Khalifa, S.A., Hussain, A., Ali, S., Saghir, M., Siddeeg, A. & Manzoor, M.F. 2021. Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus acidophilus strains isolated from Indigenous Dahi. Food Science & Nutrition, 9(9): 5092–5102. DOI: https://doi.org/10.1002/fsn3.2468
Gajendiran, A., Krishnamoorthy, S. & Abraham, J. 2016. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech, 6(1): 52. DOI: https://doi.org/10.1007/s13205-016-0394-x
Gupta, K.K., Sharma, K.K. & Chandra, H. 2022. Micrococcus luteus strain CGK112 isolated from cow dung demonstrated efficient biofilm-forming ability and degradation potential toward high-density polyethylene (HDPE). Archives of Microbiology, 204: 402. DOI: https://doi.org/10.1007/s00203-022-03023-4
Hadad, D., Geresh, S. & Sivan, A. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5): 1093–1100. DOI: https://doi.org/10.1111/j.1365-2672.2005.02553.x
Haider, T.P., Völker, C., Kramm, J., Landfester, K. & Wurm, F.R. 2019. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition, 58: 50–62. DOI: https://doi.org/10.1002/anie.201805766
Harshvardhan, K. & Jha, B. 2013. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin, 77(1–2): 100–106. DOI: https://doi.org/10.1016/j.marpolbul.2013.10.025
Jadhav, H.S., Fulke, A.B., Dasari, L.N., Dalai, A. & Haridevi, C.K. 2024. Plastic bio-mitigation by Pseudomonas mendocina ABF786 and simultaneous conversion of its CO₂ byproduct to microalgal biodiesel. Bioresource Technology, 391: 129952. DOI: https://doi.org/10.1016/j.biortech.2023.129952
Ji, S.H., Yoo, S., Park, S. & Lee, M.J. 2024. Biodegradation of low-density polyethylene by plasma-activated Bacillus strain. Chemosphere, 349: 140763. DOI: https://doi.org/10.1016/j.chemosphere.2023.140763
Karamanlioglu, M., Preziosi, R. & Robson, G.D. 2017. The compostable plastic poly(lactic) acid causes a temporal shift in fungal communities in maturing compost. Compost Science & Utilization, 25: 211–219. DOI: https://doi.org/10.1080/1065657X.2016.1277808
Krasowska, A. & Sigler, K. 2014. How microorganisms use hydrophobicity and what does this mean for human needs? Frontiers in Cellular and Infection Microbiology, 4: 112. DOI: https://doi.org/10.3389/fcimb.2014.00112
Kumar Sen, S. & Raut, S. 2015. Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering, 3(1): 462–473. DOI: https://doi.org/10.1016/j.jece.2015.01.003
Kyaw, B.M., Champakalakshmi, R., Sakharkar, M.K., Lim, C.S. & Sakharkar, K.R. 2012. Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian Journal of Microbiology, 52: 411–419. DOI: https://doi.org/10.1007/s12088-012-0250-6
Lebreton, L. & Andrady, A. 2019. Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5: 6. DOI: https://doi.org/10.1057/s41599-018-0212-7
Leong, S.S., Ismail, J., Denil, N.A., Sarbini, S.R., Wasli, W. & Debbie, A. 2018. Microbiological and physicochemical water quality assessments of river water in an industrial region of the Northwest Coast of Borneo. Water, 10(11): 1648. DOI: https://doi.org/10.3390/w10111648
Leong, S.S., Lihan, S. & Toh, S.C. 2022. Prevalence of chloramphenicol-resistant gene in Escherichia coli from water sources in aquaculture farms and rivers of Kuching, Northwestern Borneo. Fisheries and Aquatic Sciences, 25(4): 202–213. DOI: https://doi.org/10.47853/FAS.2022.e19
Li, Z., Wei, R., Gao, M., Ren, Y., Yu, B., Nie, K., Xu, H. & Liu, L. 2020. Biodegradation of low-density polyethylene by Microbulbifer hydrolyticus IRE-31. Journal of Environmental Management, 263: 110402. DOI: https://doi.org/10.1016/j.jenvman.2020.110402
Li, H., Zhang, M., Zhang, Y., Xu, X., Zhao, Y., Jiang, X., Zhang, R. & Gui, Z. 2023. Characterization of cellulose-degrading bacteria isolated from silkworm excrement and optimization of its cellulase production. Polymers (Basel), 15(20): 4142. DOI: https://doi.org/10.3390/polym15204142
MacLeod, M., Arp, H.P.H., Tekman, M.B. & Jahnke, A. 2021. The global threat from plastic pollution. Science, 373(6550): 61–65. DOI: https://doi.org/10.1126/science.abg5433
Molgroup. 2017. Product catalogue low density polyethylene [WWW Document]. Molgroup Magazine. (accessed 20.6.24).
Montazer, Z., Habibi Najafi, M.B. & Levin, D.B. 2020. Challenges with verifying microbial degradation of polyethylene. Polymers (Basel), 12(1): 123. DOI: https://doi.org/10.3390/polym12010123
Nademo, Z.M., Shibeshi, N.T. & Gemeda, M.T. 2023. Isolation and screening of low-density polyethylene (LDPE) bags degrading bacteria from Addis Ababa municipal solid waste disposal site “Koshe”. Annals of Microbiology, 73: 6. DOI: https://doi.org/10.1186/s13213-023-01711-0
Nguyen, T., Merna, J., Kysor, E., Kohlmann, O. & Levin, D.B. 2024. Bacterial degradation of low-density polyethylene preferentially targets the amorphous regions of the polymer. Polymers, 16(20): 20. DOI: https://doi.org/10.3390/polym16202865
Parker, L. 2019. The world’s plastic pollution crisis explained [WWW Document]. National Geographic. (accessed 20.6.24).
Pikuta, E., Lysenko, A., Chuvilskaya, N., Mendrock, U., Hippe, H., Suzina, N., Nikitin, D., Osipov, G. & Laurinavichius, K. 2000. Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavitherms comb. nov. International Journal of Systematic and Evolutionary Microbiology, 50(6): 2109–2117. DOI: https://doi.org/10.1099/00207713-50-6-2109
Plastic Expert. 2022. LDPE Recycling - How is LDPE recycled? [WWW Document]. Plastic Expert. (accessed 1.6.24).
Rafiq, S., Fathima, F., Jasmine Shahina, S.K. & Vijaya Ramesh, K. 2018. Biodegradation of low density polyethylene (LDPE) by halophilic bacteria isolated from solar saltpans, Kovalam, Chennai. Nature Environment and Pollution Technology, 17(4): 1367–1371.
Rhodes, C.J. 2018. Plastic Pollution and Potential Solutions. Science Progress, (3): 207–260. DOI: https://doi.org/10.3184/003685018X15294876706211
Rong, Z., Ding, Z.H., Wu, Y.H. & Xu, X.W. 2024. Degradation of low-density polyethylene by the bacterium Rhodococcus sp. C-2 isolated from seawater. Science of The Total Environment, 907: 167993. DOI: https://doi.org/10.1016/j.scitotenv.2023.167993
Samanta, S., Datta, D., Tiwari, O.N. & Halder, G. 2022. Microbial enhancement of biodegradability inoculating Bacillus tropicus and Staphylococcus cohnii onto LDPE/starch blended films. Biomass Conversion and Biorefinery, 14(13): 1–14. DOI: https://doi.org/10.1007/s13399-022-03478-x
Sarker, R.K., Chakraborty, P., Paul, P., Chatterjee, A. & Tribedi, P. 2020. Degradation of low-density polyethylene (LDPE) by Enterobacter cloacae AKS7: a potential step towards sustainable environmental remediation. Archives of Microbiology, 202: 2117–2125. DOI: https://doi.org/10.1007/s00203-020-01926-8
Sarmah, P. & Rout, J. 2019. Cyanobacterial degradation of low-density polyethylene (LDPE) by Nostoc carneum isolated from submerged polyethylene surface in domestic sewage water. Energy, Ecology and Environment, 4(5): 240–252. DOI: https://doi.org/10.1007/s40974-019-00133-6
Shao, H., Chen, M., Fei, X., Zhang, R., Zhong, Y., Ni, W., Tao, X., He, X., Zhang, E., Yong, B. & Tan, X. 2019. Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces albogriseolus LBX-2. Microorganisms, 7(10): 379. DOI: https://doi.org/10.3390/microorganisms7100379
Silva, R.R.A., Marques, C.S., Arruda, T.R., Teixeira, S.C. & de Oliveira, T.V. 2023. Biodegradation of polymers: Stages, measurement, standards and prospects. Macromolecule, 3(2): 371–399. DOI: https://doi.org/10.3390/macromol3020023
Sivan, A., Szanto, M. & Pavlov, V. 2006. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72: 346–352. DOI: https://doi.org/10.1007/s00253-005-0259-4
Skariyachan, S., Patil, A.A., Shankar, A., Manjunath, M., Bachappanavar, N. & Kiran, S. 2018. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sp. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation and Stability, 149: 52–68. DOI: https://doi.org/10.1016/j.polymdegradstab.2018.01.018
Soud, S. 2019. Biodegradation of polyethylene LDPE plastic waste using locally isolated Streptomyces sp. Journal of Pharmaceutical Sciences and Research, 11(4): 1333–1339.
Suresh, V., Shams, R., Dash, K.K., Shaikh, A.M. & Béla, K. 2025. Comprehensive review on enzymatic polymer degradation: A sustainable solution for plastics. Journal of Agriculture and Food Research, 20: 101788. DOI: https://doi.org/10.1016/j.jafr.2025.101788
Tao, X., Ouyang, H., Zhou, A., Wang, D., Matlock, H., Morgan, J.S., Ren, A.T., Mu, D., Pan, C., Zhu, X., Han, A. & Zhou, J. 2023. Polyethylene degradation by a Rhodococcus strain isolated from naturally weathered plastic waste enrichment. Environmental Science & Technology, 57(37): 13901–13911. DOI: https://doi.org/10.1021/acs.est.3c03778
Toh, S.C., Lihan, S., Leong, S.S., Lahuri, A.K., Woon, W.C. & Ng, W.W. 2023. Enzymatic screening and genotypic characterization of thermophilic bacteria from the hot springs of Sarawak, Malaysia. Makara Journal of Science, 27(4): 4. DOI: https://doi.org/10.7454/mss.v27i4.1449
Torre, D.Y.Z.D., Santos, L.A.D., Reyes, M.L.C. & Baculi, R.Q. 2018. Biodegradation of low-density polyethylene by bacteria isolated from serpentinization-driven alkaline spring. Philippine Science Letters, 11: 1–12.
United Nation. 2014. Plastic waste causes $13 billion in annual damage to marine ecosystems, says UN agency [WWW Document]. United Nation. (accessed 1.5.24).
Vimala, P.P. & Mathew, L. 2016. Biodegradation of polyethylene using Bacillus subtilis. Procedia Technology, 24: 232–239. DOI: https://doi.org/10.1016/j.protcy.2016.05.031
Wu, Z., Shi, W., Valencak, T.G., Zhang, Y., Liu, G. & Ren, D. 2023. Biodegradation of conventional plastics: Candidate organisms and potential mechanisms. Science of The Total Environment, 885: 163908. DOI: https://doi.org/10.1016/j.scitotenv.2023.163908
Yan, F., Wei, R., Cui, Q., Bornscheuer, U.T. & Liu, Y. 2020. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microbial Biotechnology, 14(2): 374–385. DOI: https://doi.org/10.1111/1751-7915.13580
Zahari, N.Z., Abdullah, S.N., Tuah, P.M. & Cleophas, F.N. 2021. Biodegradation of low-density polyethylene (LDPE) and starch – based plastic (SBP) by thermophiles Bacillus subtilis and Candida tropicalis. IOP Conference Series: Materials Science and Engineering, 1173(1): 012035. DOI: https://doi.org/10.1088/1757-899X/1173/1/012035
Zhang, Y., Pedersen, J.N., Eser, B.E. & Guo, Z. 2022. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. B Biotechnology Advances, 60: 107991. DOI: https://doi.org/10.1016/j.biotechadv.2022.107991
Zheng, S., Bawazir, M., Dhall, A., Kim, H.E., He, L., Heo, J. & Hwang, G. 2021. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Frontiers in Bioengineering and Biotechnology, 9: 643722. DOI: https://doi.org/10.3389/fbioe.2021.643722
Zhou, Z., Wu, X., Lin, Z., Pang, S., Mishra, S. & Chen, S. 2021. Biodegradation of fipronil: Current state of mechanisms of biodegradation and future perspectives. Applied Microbiology and Biotechnology, 105(20): 7695-7708. DOI: https://doi.org/10.1007/s00253-021-11605-3
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Universiti Putra Malaysia
Grant numbers 9692700











