Sustainable Protocols For Leaf Sample Collection in In-Vitro Culture: Evaluating The Impact of Sample Bags and Hydrogen Peroxide Pre-Sterilization
Keywords:
Capsicum frutescens, hydrogen peroxide (H2O2), in-vitro culture, leaf sample collection protocols, Solanum lycopersicum, vacuum-sealed bagsAbstract
This study investigates sustainable leaf sample collection protocols for in-vitro culture (IVC) of chili (Capsicum frutescens) and tomato (Solanum lycopersicum) leaves. The research aimed to enhance viability and reduce contamination of leaf explants by evaluating various types of sample bags and different concentrations of hydrogen peroxide (H2O2) pre-sterilization. Specifically, the study compared the effectiveness of normal sealed (NS) bags and vacuum-sealed (VS) bags, including high-action (VSH) and low-action (VSL) vacuum-sealed bags, alongside H2O2 pre-sterilization at various concentrations. Leaf samples were treated with ten different concentrations of H2O2 (5% to 50%) to assess their impact on necrosis and surface contamination over 72 hr. Results showed that higher H2O2 concentrations (above 30%) caused significant necrosis, while concentrations between 10% and 15% provided optimal pre-sterilization for both leaf types, effectively reducing contamination without excessive tissue damage. In the second phase, the research examined the influence of different sample bags on leaf explant sustainability. Vacuum-sealed bags, particularly those with low-action vacuum (VSL), significantly improved leaf longevity and minimized contaminant emergence compared to normal sealed bags. Combined with 15% H2O2 pre-sterilization, VSL bags performed best, maintaining leaf morphology and viability for extended periods. Statistical analyses confirmed the significant impact of sampling bag type and pre-sterilization on contamination levels, necrosis emergence, and leaf longevity. The findings suggest that using low-action vacuum-sealed bags (VSL) with 15% H2O2 pre-sterilization is a promising approach for sustainable leaf sample collection, enhancing the success rate of IVC by minimizing microbial contamination and preserving leaf integrity during transport. This optimized protocol offers valuable insights for researchers and practitioners in plant tissue culture and agriculture, aiming to improve the sustainability and efficiency of leaf sample collection for in-vitro applications.
Downloads
Metrics
References
Aasim, M., Karatas, M., Khawar, K.M. & Dogan, M. 2013. Optimization of sterilization and micropropagation of water lettuce (Pistia stratiotes L.). Journal of Applied Biological Sciences, 7(3): 71-74.
Abdalla, N., El-Ramady, H., Seliem, M., El-Mahrouk, M., Taha, N., Bayoumi, Y., Shalaby, T. & Dobránszki, J. 2022. An academic and technical overview on plant micropropagation challenges. Horticulturae, 8(8): 677. DOI: https://doi.org/10.3390/horticulturae8080677
Ahmed, S., Wan Azizan, W.A.S., Akhond, M.A.Y., Juraimi, A.S., Ismail, S.I., Ahmed, R. & Md Hatta, M.A. 2023. Optimization of in vitro regeneration protocol of tomato cv. MT1 for genetic transformation. Horticulturae, 9(7): 800. DOI: https://doi.org/10.3390/horticulturae9070800
Akomolafe, O. & Awe, T. 2017. Microbial contamination and polyethylene packaging of some fruits and vegetables retailed at Akure and Ado Ekiti, South Western Nigeria. Journal of Stored Products and Postharvest Research, 8: 65-72.
Anderson dos Santos Formiga, V. & Silveira Júnior, V. 2024. Kinetic model to predict shelf life of guavas under different storage conditions with and without hydrogen peroxide (H2O2). Food Packaging and Shelf Life, 41: 101245. DOI: https://doi.org/10.1016/j.fpsl.2024.101245
Biasi, L.A., Falco, M.C., Rodriguez, A.P.M. & Mendes, B.M.J. 2000. Organogenesis from internodal segments of yellow passion fruit. Scientia Agricola, 57(4): 661-665. DOI: https://doi.org/10.1590/S0103-90162000000400010
Brudzynski, K., Abubaker, K., St-Martin, L. & Castle, A. 2011. Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Frontiers in Microbiology, 2(1): 213. DOI: https://doi.org/10.3389/fmicb.2011.00213
Cabiscol, E., Piulats, E., Echave, P.J., Herrero, E. & Ros, J. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. Journal of Biological Chemistry, 275(35): 27393-27398. DOI: https://doi.org/10.1016/S0021-9258(19)61523-1
Cardoso, J.C., Sheng, G.L.T. & Teixeira da Silva, J.A. 2018. Micropropagation in the twenty-first century. Methods in Molecular Biology, 1815: 17-46. DOI: https://doi.org/10.1007/978-1-4939-8594-4_2
Chihara, R., Kitajima, H., Ogawa, Y., Nakamura, H., Tsutsui, S., Mizutani, M., Kino-Oka, M. & Ezoe, S. 2018. Effects of residual H2O2 on the growth of MSCs after decontamination. Regenerative Therapy, 9: 111-115. DOI: https://doi.org/10.1016/j.reth.2018.08.003
Cruz‐Mendívil, A., Rivera-López, J., Germán-Báez, L., López-Meyer, M., Hernández-Verdugo, S., López‐Valenzuela, J., Reyes-Moreno, C. & Valdéz-Ortiz, Á. 2011. A simple and efficient protocol for plant regeneration and genetic transformation of tomato cv. micro-tom from leaf explants. HortScience, 46(12): 1655-1660. DOI: https://doi.org/10.21273/HORTSCI.46.12.1655
Curvetto, N.R., Marinangeli, P.A. & Mockel, G.C. 2006. Hydrogen peroxide in micropropagation of Lilium: A comparison with a traditional methodology. Biocell, 30(3): 497-500. DOI: https://doi.org/10.32604/biocell.2006.30.497
da Cunha, N.B., Leite, M.L., de Loiola Costa, L.S., Cunha, V.A., Sena Macedo, M.W.F. & Dias, S.C. 2021. An overview of the importance of bacterial elements for plant genetic engineering. Journal of Bacteriology and Mycology, 8(1): 1161.
Davies, K.J.A. 2000. Oxidative stress, antioxidant defences, and damage, removal, repair and replacement systems. IUBMB Life, 50(4): 279-289. DOI: https://doi.org/10.1080/15216540051081010
Dogra, S. 2023. Plant tissue culture industry in India: trends and scope. International Journal of Advanced Biochemistry Research, 7(1S): 28-33. DOI: https://doi.org/10.33545/26174693.2023.v7.i1Sa.176
Đorđević, J., Milijašević, M., Kocić-Tanackov, S., Mihajlović, N., Pavlić, B., Šojić, B. & Tomović, V. 2017. Effect of vacuum and modified atmosphere packaging on microbiological properties of cold-smoked trout. IOP Conference Series: Earth and Environmental Science, 85: 012084. DOI: https://doi.org/10.1088/1755-1315/85/1/012084
Finnegan, M., Linley, E., Denyer, S.P., McDonnell, G., Simon, C. & Maillard, J.-Y. 2010. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. Journal of Antimicrobial Chemotherapy, 65(10): 2108-2115. DOI: https://doi.org/10.1093/jac/dkq308
Gagnaire, F., Marignac, B., Hecht, G. & Héry, M. 2002. Sensory irritation of acetic acid, hydrogen peroxide, peroxyacetic acid and their mixture in mice. Annals of Occupational Hygiene, 46: 97-102.
Gerszberg, A. & Grzegorczyk-Karolak, I. 2019. Influence of selected antibiotics on the tomato regeneration in in vitro cultures. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3): 558–564. DOI: https://doi.org/10.15835/nbha47311401
Gorris, L.G.M. & Peppelenbos, H.W. 1992. Modified atmosphere and vacuum packaging to extend the shelf life of respiring food products. HortTechnology, 2(3): 303-309. DOI: https://doi.org/10.21273/HORTTECH.2.3.303
Ha, N., Do, C., Hoang, T., Ngo, N., Bui, L. & Nhựt, D. 2020. The effect of cobalt and silver nanoparticles on overcoming leaf abscission and enhanced growth of rose (Rosa hybrida L. ‘Baby Love’) plantlets cultured in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 141: 393-405. DOI: https://doi.org/10.1007/s11240-020-01796-4
Hamdeni, M., Slim, S., Sanaa, A., Louhaichi, M., Boulila, A. & Bettaieb, T. 2022. Rosemary essential oil enhances culture establishment and inhibits contamination and enzymatic browning: Applications for in vitro propagation of Aloe vera L. South African Journal of Botany, 147: 1199-1205. DOI: https://doi.org/10.1016/j.sajb.2021.06.009
Hashim, S.N., Ghazali, S.Z., Sidik, N.J., Chay, T.C. & Saleh, A. 2021. Surface sterilization method for reducing contamination of Clinacanthus nutans nodal explants intended for in-vitro culture. E3S Web of Conferences, 306: 01004. DOI: https://doi.org/10.1051/e3sconf/202130601004
Hasnain, A., Naqvi, S., Ayesha, S., Khalid, F., Ellahi, M., Iqbal, S. & Abdelhamid, M. 2022. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science, 13: 1009395. DOI: https://doi.org/10.3389/fpls.2022.1009395
Hen, L.-R., Hsiung, T.-C., Lin, K.-H., Huang, T.-B., Huang, M.-Y. & Wakana, A. 2017. Supplementary effect of hydrogen peroxide as a pre-disinfectant for sterilizing rhizome bud explants of Zantedeschia aethiopica L. with chlorine dioxide. Journal of the Faculty of Agriculture, Kyushu University, 62(1): 81-86. DOI: https://doi.org/10.5109/1799306
Hindoy, C., Magbalot-Fernandez, A., Ubaub, L. & Basu, S. 2020. Bacterial and fungal contaminants of tissue-cultured 'lakatan' banana. International Journal on Agricultural Sciences, 11(1); 8-12. DOI: https://doi.org/10.53390/ijas.v11i1.2
Huang, C., Gangola, M., Kutcher, H., Hucl, P., Ganeshan, S. & Chibbar, R. 2020. In vitro wheat immature spike culture screening identified fusarium head blight resistance in wheat spike cultured derived variants and in the progeny of their crosses with an elite cultivar. The Plant Pathology Journal, 36(6): 558-569. DOI: https://doi.org/10.5423/PPJ.OA.07.2020.0127
Hussain, A., Ahmed, I., Nazir, H. & Ullah, I. 2012. Plant Tissue Culture: Current Status and Opportunities. InTech. DOI: https://doi.org/10.5772/50568
Ikai, H., Nakamura, K., Shirato, M., Kanno, T., Iwasawa, A., Sasaki, K., Niwano, Y. & Kohno, M. 2010. Photolysis of hydrogen peroxide, an effective disinfection system via hydroxyl radical formation. Antimicrobial Agents and Chemotherapy, 54(1): 5086-5091. DOI: https://doi.org/10.1128/AAC.00751-10
Jacobsson, A., Nielsen, T. & Sjöholm, I. 2003. Influence of packaging material and storage temperature on texture, colour, and weight of broccoli. Acta Horticulturae, 600: 323-323. DOI: https://doi.org/10.17660/ActaHortic.2003.600.45
Junaidy, R. & Shahruddin, S. 2021. Germinability and seedling growth performance of chilli (Capsicum annuum) seeds in response to different gibberellic acid concentrations pre-treatment. Agrotech Food Science Technology and Environment, 1(1): 10-16. DOI: https://doi.org/10.53797/agrotech.v1i1.2.2021
Kim, H. & Lee, D.G. 2021. Contribution of SOS genes to H2O2-induced apoptosis-like death in Escherichia coli. Current Genetics, 67(5): 969-980. DOI: https://doi.org/10.1007/s00294-021-01204-0
Kulak, V., Longboat, S., Brunet, N., Shukla, M. & Saxena, P. 2022. In vitro technology in plant conservation: relevance to biocultural diversity. Plants, 11(4): 503. DOI: https://doi.org/10.3390/plants11040503
Leifert, C. & Cassells, A.C. 2001. Microbial hazards in plant tissue and cell cultures. In Vitro Cellular & Developmental Biology - Plant, 37(2): 133-138. DOI: https://doi.org/10.1007/s11627-001-0025-y
Linley, E., Denyer, S.P., McDonnell, G., Simons, C. & Maillard, J.-Y. 2012. Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action. Journal of Antimicrobial Chemotherapy, 67(7): 1589–1596. DOI: https://doi.org/10.1093/jac/dks129
Lopez-Moreno, H.A., Hernandez, E.G. & Martinez, C.P. 2023. Genetic analysis of domestication-related traits in chili peppers. Plant Genome, 16(1): e20097. DOI: https://doi.org/10.3389/fgene.2023.1101401
Luo, D., Smith, S.W. & Anderson, B.D. 2005. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. Journal of Pharmaceutical Sciences, 94(2): 304-316. DOI: https://doi.org/10.1002/jps.20253
Maheswaran, S., Sathesh, S., Vivek, B., Deepika, M., Divya Dharshni, M., Boopesh Raja, K.J. & Mohan Raj. 2021. Prolong freshness of foods by maintaining vacuum pressure. NVEO - Natural Volatiles & Essential Oils Journal, 8(5).
McDonnell, G. 2014. The use of hydrogen peroxide for disinfection and sterilization applications. In: PATAI'S Chemistry of Functional Groups. Z. Rappoport (Ed.). Wiley DOI: https://doi.org/10.1002/9780470682531.pat0885
Metwaly, A., Salama, G.M. & Ali, G.A. 2018. Using hydrogen peroxide for reducing bacterial contamination in date palm tissue culture. International Journal of Advances in Agricultural Science and Technology, 5(4): 25-33.
Molitor, D., Klein, J.T. & Legrand, C. 2023. High-quality chromosome-level genome assembly of Solanum chilense: Implications for sustainable tomato production. Genome Biology, 24(1): 61.
Moreno-Vázquez, S., Larrañaga, N., Uberhuaga, E., Braga, E. & Pérez-Ruíz, C. 2014. Bacterial contamination of in vitro plant cultures: confounding effects on somaclonal variation and detection of contamination in plant tissues. Plant Cell Tissue and Organ Culture (PCTOC), 119(3): 533-541. DOI: https://doi.org/10.1007/s11240-014-0553-x
Norouzi, O., Hesami, M., Pepe, M., Dutta, A. & Jones, A.M.P. 2022. In vitro plant tissue culture as the fifth generation of bioenergy. Scientific Reports, 12: 5038. DOI: https://doi.org/10.1038/s41598-022-09066-3
Noszticzius, Z., Wittmann, M.G., Kály-Kullai, K., Rosivall, L., Szegedi, J. & Schwartz, R. . 2013. Chlorine dioxide is a size-selective antimicrobial agent. PLoS ONE, 8(11): e79157. DOI: https://doi.org/10.1371/journal.pone.0079157
Olarte, C., Sanz, S., Echávarri, J. & Ayala, F. 2009. Effect of plastic permeability and exposure to light during storage on the quality of minimally processed broccoli and cauliflower. LWT - Food Science and Technology, 42: 402-411. DOI: https://doi.org/10.1016/j.lwt.2008.07.001
Ossola, R. 2024. Development of a sampling protocol for collecting leaf surface material for multiphase chemistry studies. Earth, Space, and Environmental Chemistry. (preprint). DOI: https://doi.org/10.26434/chemrxiv-2024-d01vd
Pereira, A.M.S., Bertoni, B.W., Appezzato-da-Glória, B., Araujo, A.R.B., Januário, A.H., Lourenço, M.V. & França, S.C. 2000. Micropropagation of Pothomorphe umbellata via direct organogenesis from leaf explants. Plant Cell, Tissue and Organ Culture, 60: 47–53. DOI: https://doi.org/10.1023/A:1006409807719
Permadi, N., Nurzaman, M., Alhasnawi, A., Doni, F. & Julaeha, E. 2023. Managing lethal browning and microbial contamination in Musa spp. tissue culture: Synthesis and perspectives. Horticulturae, 9(4): 453. DOI: https://doi.org/10.3390/horticulturae9040453
Purwantoro, A., Purwestri, Y.A., Lawrie, D. & Semiarti, E. 2022. Genetic transformation via plant tissue culture techniques: Current and future approaches. In: Advances in Plant Tissue Culture. A.C. Rai, A. Kumar, A. Modi and M. Singh (Eds.). Elsevier. pp. 131-156. DOI: https://doi.org/10.1016/B978-0-323-90795-8.00001-1
Rachmawati, R., Sari, E.N. & Putri, F.R. 2023. Challenges of phenolic exudation and contamination in chili tissue culture. Plant Cell, Tissue and Organ Culture, 144(2): 283-295.
Rafael, M.A., Valle, T., Babiana, M.J. & Corchete, P. 2001. Correlation of resistance and H2O2 production in Ulmus pumila and Ulmus campestris cell suspension cultures inoculated with Ophiostoma novo-ulmi. Physiologia Plantarum, 111(4): 512-518. DOI: https://doi.org/10.1034/j.1399-3054.2001.1110411.x
Rahayu, E. S., Widiatningrum, T., Herlina, L., Hermayani, N. & Amalia, A.R. 2019. The optimal sterilizing compound and culture medium in Elaeocarpus grandiflorus L. in vitro shoot induction. Journal of Physics: Conference Series, 1321(3): 032040. DOI: https://doi.org/10.1088/1742-6596/1321/3/032040
Ramgareeb, S., Watt, M. & Cooke, A. 2001. Micropropagation of Cynodon dactylon from leaf and nodal segments. South African Journal of Botany, 67: 250-257. DOI: https://doi.org/10.1016/S0254-6299(15)31126-1
Rani, S., Puri, R., Boora, P., Qasim, A. & Mehta, M. 2023. Development of an in vitro propagation protocol for thalictrum foliolosum: an endangered medicinal plant. Plant Tissue Culture and Biotechnology, 33(1): 47-56. DOI: https://doi.org/10.3329/ptcb.v33i1.66689
Sakthivel & Manivannan, K. 2021. Effect of foliar application of bio stimulants on growth, yield and quality parameters of chilli (Capsicum annuum L). Research Journal of Agricultural Sciences, 12(2): 466-469
Sanatombi, K. & Sharma, G. 2008. In vitro plant regeneration in six cultivars of Capsicum spp. using different explants. Biologia Plantarum, 52(1): 141-145. DOI: https://doi.org/10.1007/s10535-008-0029-0
Setamam, N.M. & Sidik, N.J. 2017. Combination of hairy roots explants and 6-benzylaminopurine (BA) as an alternative improvement for in-vitro plant regeneration of Capsicum spp. Research & Reviews: Journal of Botanical Sciences, 6(1): 1-8.
Setamam, N.M., Sidik, N.J., Rahman, Z.A. & Zain, C.R.C.M. 2014. Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of capsicum species explants. BMC Research Notes, 7(1): 414. DOI: https://doi.org/10.1186/1756-0500-7-414
Shafiq, M., Ashraf, T., Mushtaq, S., Anjum, N., Asim, M., Feroze, M.A. & Aziz, M. 2022. Response of different (Capsicum annuum L.) genotypes for callus induction, plant regeneration and plant transformation. Sarhad Journal of Agriculture, 38(4): 1332-1343. DOI: https://doi.org/10.17582/journal.sja/2022/38.4.1332.1343
Silva, T., Santos, I. & Costa, J. 2020. Enhancing tissue culture regeneration efficiency in tomato (Solanum lycopersicum) using activated charcoal and polyvinylpyrrolidone (PVP). Plant Cell, Tissue and Organ Culture, 143(2): 347-356.
Spokowski, A. 2010. Effect of refrigerated vacuum storage on the shelf life of comingled broccoli, cauliflower, and carrots. (Master's thesis, Clemson University). Retrieved from Clemson University's All Theses repository. (Thesis No. 833).
Stamp, J., Colby, S. & Meredith, C. 1990. Improved shoot organogenesis from leaves of grape. Journal of the American Society for Horticultural Science, 115: 1038-1042. DOI: https://doi.org/10.21273/JASHS.115.6.1038
Tamarit, J., Cabiscol, E. & Ros, J. 1998. Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. Journal of Biological Chemistry, 273(5): 3027-3032. DOI: https://doi.org/10.1074/jbc.273.5.3027
Thakur, S. 2024. A review on plant tissue culture. Asian Journal of Biology, 20(2): 14-18. DOI: https://doi.org/10.9734/ajob/2024/v20i2387
Thandapani, P. 2024. Usage of near infrared spectrometer as an analyzing tool for nutrients in leaf, fertilizer and soil in oil palm industry. IOP Conference Series: Earth and Environmental Science, 1308(1): 012036. DOI: https://doi.org/10.1088/1755-1315/1308/1/012036
Tisserat, B. & Vandercook, C. 1985. Development of an automated plant culture system. Plant Cell Tissue and Organ Culture (PCTOC), 5(2): 107-117. DOI: https://doi.org/10.1007/BF00040307
Umar, R., Ahmad, Z. & Malik, M. A. 2023. Optimizing land use for chili and tomato cultivation through tissue culture in Indonesia. Agronomy, 13(2): 450.
Umer, A.A. 2023. Review on the role of biofilm formation in bacterial pathogenesis. Austin Journal of Veterinary Science & Animal Husbandry, 10(1): 1110. DOI: https://doi.org/10.26420/austinjvetscianimhusb.2023.1110
Wanakamol, W., Kongwong, P., Chuamuangphan, C., Bundhurat, D., Boonyakiat, D. & Poonlarp, P. 2022. Hurdle approach for control of enzymatic browning and extension of shelf life of fresh-cut leafy vegetables using vacuum precooling and modified atmosphere packaging: Commercial application. Horticulturae, 8(8): 745. DOI: https://doi.org/10.3390/horticulturae8080745
Wijerathna-Yapa, A. & Hiti-Bandaralage, J. 2023. Tissue culture—a sustainable approach to explore plant stresses. Life, 13(3): 780. DOI: https://doi.org/10.3390/life13030780
Yanagawa, T., Nagai, M., Ogino, T. & Maeguchi, R. 1995. Application of disinfectants to orchid seeds, plantlets and media as a means to prevent in vitro contamination. Lindleyana, 10:33–36.
Yoo, J. H. 2018. Review of disinfection and sterilization - Back to the basics. Infection & Chemotherapy, 50(2): 101-109. DOI: https://doi.org/10.3947/ic.2018.50.2.101
Zaytseva, Y. 2024. Direct regeneration and morpho-histological study of de novo shoot development from leaf explants of Rhododendron mucronulatum Turcz. Russian Journal of Plant Physiology, 71: 17. DOI: https://doi.org/10.1134/S1021443723602574
Zeisler-Diehl, V., Müller, Y. & Schreiber, L. 2018. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. Journal of Plant Physiology, 227: 66-74. DOI: https://doi.org/10.1016/j.jplph.2018.03.018
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission