Natural Deep Eutectic Solvents vs. Conventional Solvents: Effects on Crude Yield, Mangiferin Content, Antioxidant Activity, and Toxicity in Mangifera pajang Kosterm. Fruit Extracts
Keywords:
Antioxidant, Mangifera pajang, Mangiferin, NADES, Toxicity, ultrasound-assisted extractionAbstract
Mangifera pajang Kosterm. fruits, commonly known as 'Bambangan,' are rich in natural antioxidants due to their phytochemical constituents and are categorised as an underutilised fruit. This study focused on investigating the effects of different solvents on the extraction yield (EY), mangiferin content (MC), total flavonoids (TF), total phenolics (TP), antioxidant activity, and toxicity of M. pajang fruit extracts (MPFE). The selected solvents included natural deep eutectic solvents (NADES), water, methanol, and ethanol. The extraction of MPFE was performed using ultrasound-assisted extraction with an ultrasonic probe. Antioxidant activities were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric-reducing antioxidant power (FRAP) assays. Toxicological assessment was conducted using the brine shrimp lethality assay (BSLA) to determine LC50 values. Overall, NADES proved to be the most efficient solvent for extraction, yielding the highest EY (37.09 ± 2.34%), MC (0.032 ± 0.000 mg/g), TF (0.80 ± 0.01 mg RE/g dry extract), TP (14.94 ± 1.74 mg GAE/g dry extract), and exhibits potent antioxidant activity as measured by DPPH (82.38 ± 0.24%), ABTS (86.37 ± 0.03%), and FRAP (304.57 ± 5.24 mg TE/g dry extract). Moreover, NADES demonstrated non-toxicity in the BSLA (LC50 = 1988.37 µg/mL) of MPFE. These findings suggest that NADES is a suitable solvent for exploring the medicinal potential of M. pajang fruits and their application in therapeutic development.
Downloads
Metrics
References
Abubakar, A.R. & Haque, M. 2020. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy and Bioallied Sciences, 12(1): 1–10. DOI: https://doi.org/10.4103/jpbs.JPBS_175_19
Akano, O.P. & Akinsomisoye, O.S. 2024. Brine shrimp bioactivity and cytotoxic potential of Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) Baill seed. Jundishapur Journal of Health Sciences, 16(1): e142215. DOI: https://doi.org/10.5812/jjhs-142215
Alañón, M.E., Ivanović, M., Gómez-Caravaca, A.M., Arráez-Román, D. & Segura-Carretero, A. 2020. Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arabian Journal of Chemistry, 13:1685–1701. DOI: https://doi.org/10.1016/j.arabjc.2018.01.003
Alqahtani, N.K., Mohamed, H.A., Moawad, M.E., Younis, N.S. & Mohamed, M.E. 2023. The hepatoprotective effect of two date palm fruit cultivars’ extracts: Green optimization of the extraction process. Foods, 12(6): 1229. DOI: https://doi.org/10.3390/foods12061229
Alves, T.F.P., Teixeira, N., Vieira, J., Vicente, A.A., Mateus, N., de Freitas, V. & Souza, H.K.S. 2022. Sustainable chitosan packaging films: Green tea polyphenolic extraction strategies using deep eutectic solvents. Journal of Cleaner Production, 372: 133589. DOI: https://doi.org/10.1016/j.jclepro.2022.133589
Anuar, A., Awang, M.A. & Tan, H.F. 2021. Impact of solvent selection on the extraction of total phenolic content and total flavonoid content from kaffir lime leaves: Ultrasonic assisted extraction (UAE) and microwave assisted extraction (MAE). AIP Conference Proceedings, 2347: 020020. DOI: https://doi.org/10.1063/5.0051934
Asfaw, T.B., Tadesse, M.G., Tessema, F.B., Woldemariam, H.W., Chinchkar, A. V., Singh, A., Upadhyay, A. & Mehari, B. 2024. Ultrasonic-assisted extraction and UHPLC determination of ascorbic acid, polyphenols, and half-maximum effective concentration in Citrus medica and Ziziphus spina-christi fruits using multivariate experimental design. Food Chemistry: X, 22: 101310. DOI: https://doi.org/10.1016/j.fochx.2024.101310
Awang, M.A., Benjamin, M.A.Z., Anuar, A., Ismail, M.F., Ramaiya, S.D. & Mohd Hashim, S.N.A. 2023. Dataset of gallic acid quantification and their antioxidant and anti-inflammatory activities of different solvent extractions from kacip fatimah (Labisia pumila Benth. & Hook. f.) leaves. Data in Brief, 51: 109644. DOI: https://doi.org/10.1016/j.dib.2023.109644
Awang, M.A., Chua, L.S., Abdullah, L.C. & Pin, K.Y. 2021. Drying kinetics and optimization of quercetrin extraction from Melastoma malabathricum leaves. Chemical Engineering and Technology, 44(7): 1214–1220. DOI: https://doi.org/10.1002/ceat.202100007
Barbieri, J.B., Goltz, C., Cavalheiro, F.B., Toci, A.T., Igarashi-Mafra, L. & Mafra, M.R. 2020. Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Industrial Crops and Products, 144: 112049. DOI: https://doi.org/10.1016/j.indcrop.2019.112049
Benjamin, M.A.Z., Abu Bakar, M.F., Abu Bakar, F.I., Sabran, S.F., Kormin, F. & Mohamad Fuzi, S.F.Z. 2021. Development of bambangan (Mangifera pajang) carbonated drink. IOP Conference Series: Earth and Environmental Science, 736(1): 012010. DOI: https://doi.org/10.1088/1755-1315/736/1/012010
Benjamin, M.A.Z., Ng, S.Y., Saikim, F.H. & Rusdi, N.A. 2022. The effects of drying techniques on phytochemical contents and biological activities on selected bamboo leaves. Molecules, 27(19): 6458. DOI: https://doi.org/10.3390/molecules27196458
Benvenutti, L., Sanchez-Camargo, A. del P., Zielinski, A.A.F. & Ferreira, S.R.S. 2020. NADES as potential solvents for anthocyanin and pectin extraction from Myrciaria cauliflora fruit by-product: In silico and experimental approaches for solvent selection. Journal of Molecular Liquids, 315: 113761. DOI: https://doi.org/10.1016/j.molliq.2020.113761
Chemat, F., Vian, M.A., Ravi, H.K., Khadhraoui, B., Hilali, S., Perino, S. & Tixier, A.-S.F. 2019. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules, 24(16): 3007. DOI: https://doi.org/10.3390/molecules24163007
Dash, H.B., Kumar, S., Saha, M., Devi, R.S. & Biswal, S.K. 2022. Estimation of secondary metabolites and toxicity to Artemia salina L. of selected plants of family Combretaceae: An approach for screening of herbal preventive agents. International Journal of Pharmaceutical Sciences and Research, 13(2): 969–976.
Djaoudene, O., Bachir-Bey, M., Schisano, C., Djebari, S., Tenore, G.C. & Romano, A. 2024. A sustainable extraction approach of phytochemicals from date (Phoenix dactylifera L.) fruit cultivars using ultrasound-assisted deep eutectic solvent: A comprehensive study on bioactivity and phenolic variability. Antioxidants, 13(2): 181. DOI: https://doi.org/10.3390/antiox13020181
Fakhrulddin, I.M., Ramaiya, S.D., Muta Harah, Z., Nur Leena Wong, W.S., Awang, M.A. & Ismail, N.I.M. 2022. Effects of temperature on drying kinetics and biochemical composition of Caulerpa lentillifera. Food Research, 6(5): 168–173. DOI: https://doi.org/10.26656/fr.2017.6(5).637
Hassan, F.A., Ismail, A., Abdulhamid, A. & Azlan, A. 2011. Identification and quantification of phenolic compounds in bambangan (Mangifera pajang Kort.) peels and their free radical scavenging activity. Journal of Agricultural and Food Chemistry, 59(17): 9102–9111. DOI: https://doi.org/10.1021/jf201270n
He, X., Yang, J., Huang, Y., Zhang, Y., Wan, H. & Li, C. 2020. Green and efficient ultrasonic-assisted extraction of bioactive components from Salvia miltiorrhiza by natural deep eutectic solvents. Molecules, 25(1): 140. DOI: https://doi.org/10.3390/molecules25010140
Hikmawanti, N.P.E., Ramadon, D., Jantan, I. & Mun’im, A. 2021. Natural deep eutectic solvents (NADES): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants, 10(10): 2091. DOI: https://doi.org/10.3390/plants10102091
Hikmawanti, N.P.E., Saputri, F.C., Yanuar, A., Jantan, I., Ningrum, R.A., Juanssilfero, A.B. & Mun’im, A. 2024. Choline chloride-urea-based natural deep eutectic solvent for highly efficient extraction of polyphenolic antioxidants from Pluchea indica (L.) Less leaves. Arabian Journal of Chemistry, 17(2):105537. DOI: https://doi.org/10.1016/j.arabjc.2023.105537
Hussen, E.M. & Endalew, S.A. 2023. In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complementary Medicine and Therapies, 23(1): 146. DOI: https://doi.org/10.1186/s12906-023-03923-y
Ivanović, M., Alañón, M.E., Arráez-Román, D. & Segura-Carretero, A. 2018. Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Research International, 111: 67–76. DOI: https://doi.org/10.1016/j.foodres.2018.05.014
Jahurul, M.H.A., Zaidul, I.S.M., Beh, L., Sharifudin, M.S., Siddiquee, S., Hasmadi, M., Sahena, F., Mansoor, A.H., Lee, J.S. & Jinap, S. 2019. Valuable components of bambangan fruit (Mangifera pajang) and its co-products: A review. Food Research International, 115: 105–115. DOI: https://doi.org/10.1016/j.foodres.2018.08.017
Koh, Q.Q., Kua, Y.L., Gan, S., Tan, K.W., Lee, T.Z.E., Cheng, W.K. & Lau, H.L.N. 2023. Sugar-based natural deep eutectic solvent (NADES): Physicochemical properties, antimicrobial activity, toxicity, biodegradability and potential use as green extraction media for phytonutrients. Sustainable Chemistry and Pharmacy, 35: 101218. DOI: https://doi.org/10.1016/j.scp.2023.101218
Krgović, N., Jovanović, M.S., Nedeljković, S.K., Šavikin, K., Lješković, N.J., Ilić, M., Živković, J. & Menković, N. 2025. Natural deep eutectic solvents extraction of anthocyanins – effective method for valorisation of black raspberry (Rubus occidentalis L.) pomace. Industrial Crops and Products, 223: 120237. DOI: https://doi.org/10.1016/j.indcrop.2024.120237
Kumar, A., Nirmal, P., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T., Sneha, K. & Oz, F. 2023. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules, 28(2): 887. DOI: https://doi.org/10.3390/molecules28020887
Lezoul, N.E.H., Belkadi, M., Fariborz, H. & Guillén, F. 2020. Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules, 25(20): 4672. DOI: https://doi.org/10.3390/molecules25204672
Li, D. 2022. Natural deep eutectic solvents in phytonutrient extraction and other applications. Frontiers in Plant Science, 13: 1004332. DOI: https://doi.org/10.3389/fpls.2022.1004332
Luo, F., Lv, Q., Zhao, Y., Hu, G., Huang, G., Zhang, J., Sun, C., Li, X. & Chen, K. 2012. Quantification and purification of mangiferin from Chinese mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H2O2-induced stress. International Journal of Molecular Sciences, 13(9): 11260–11274. DOI: https://doi.org/10.3390/ijms130911260
Maling, S., Kabakyenga, J., Muchunguzi, C., Olet, E.A., Namaganda, M., Kahwa, I. & Alele, P.E. 2024. Medicinal plants used by traditional medicine practitioners in treatment of alcohol-related disorders in Bushenyi District, southwestern Uganda. Frontiers in Pharmacology, 15: 1407104. DOI: https://doi.org/10.3389/fphar.2024.1407104
Mansinhos, I., Gonçalves, S., Rodríguez-Solana, R., Ordóñez-Díaz, J.L., Moreno-Rojas, J.M. & Romano, A. 2021. Ultrasonic-assisted extraction and natural deep eutectic solvents combination: A green strategy to improve the recovery of phenolic compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco. Antioxidants, 10(4): 582. DOI: https://doi.org/10.3390/antiox10040582
Marinov, T., Kokanova-Nedialkova, Z. & Nedialkov, P. 2024. UHPLC-HRMS-based profiling and simultaneous quantification of the hydrophilic phenolic compounds from the aerial parts of Hypericum aucheri Jaub. & Spach (Hypericaceae). Pharmacia, 71: 1–11. DOI: https://doi.org/10.3897/pharmacia.71.e122436
Martinović, M., Krgović, N., Nešić, I., Žugić, A. & Tadić, V.M. 2022. Conventional vs. green extraction using natural deep eutectic solvents—differences in the composition of soluble unbound phenolic compounds and antioxidant activity. Antioxidants, 11(11): 2295. DOI: https://doi.org/10.3390/antiox11112295
Meena, D.K., Sahoo, A.K., Swain, H.S., Borah, S., Srivastava, P.P., Sahu, N.P. & Das, B.K. 2020. Prospects and perspectives of virtual in-vitro toxicity studies on herbal extracts of Terminalia arjuna with enhanced stratagem in Artemia salina model: A panacea to explicit the credence of solvent system in brine shrimp lethality bioassay. Emirates Journal of Food and Agriculture, 32(1): 25–37. DOI: https://doi.org/10.9755/ejfa.2020.v32.i1.2055
Ng, Z.X., Samsuri, S.N. & Yong, P.H. 2020. The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities. Journal of Food Processing and Preservation, 44(9): e14680. DOI: https://doi.org/10.1111/jfpp.14680
Obluchinskaya, E.D., Pozharitskaya, O.N., Zakharova, L. V., Daurtseva, A. V., Flisyuk, E. V. & Shikov, A.N. 2021. Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from Fucus vesiculosus. Molecules, 26(14): 4198. DOI: https://doi.org/10.3390/molecules26144198
Ozkan, G. 2024. Valorization of artichoke outer petals by using ultrasound-assisted extraction and natural deep eutectic solvents (NADES) for the recovery of phenolic compounds. Journal of the Science of Food and Agriculture, 104(5): 2744–2749. DOI: https://doi.org/10.1002/jsfa.13158
Plaza, M., Domínguez-Rodríguez, G., Sahelices, C. & Marina, M.L. 2021. A sustainable approach for extracting non-extractable phenolic compounds from mangosteen peel using ultrasound-assisted extraction and natural deep eutectic solvents. Applied Sciences, 11(12): 5652. DOI: https://doi.org/10.3390/app11125625
Prabhune, A. & Dey, R. 2023. Green and sustainable solvents of the future: Deep eutectic solvents. Journal of Molecular Liquids, 379: 121676. DOI: https://doi.org/10.1016/j.molliq.2023.121676
Radošević, K., Ćurko, N., Gaurina Srček, V., Cvjetko Bubalo, M., Tomašević, M., Kovačević Ganić, K. & Radojčić Redovniković, I. 2016. Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT, 73: 45–51. DOI: https://doi.org/10.1016/j.lwt.2016.05.037
Razboršek, M.I., Ivanović, M., Krajnc, P. & Kolar, M. 2020. Choline chloride based natural deep eutectic solvents as extraction media for extracting phenolic compounds from chokeberry (Aronia melanocarpa). Molecules, 25(7): 1619. DOI: https://doi.org/10.3390/molecules25071619
Rodrigues, R.P., Sousa, A.M., Gando-Ferreira, L.M. & Quina, M.J. 2023. Grape pomace as a natural source of phenolic compounds: Solvent screening and extraction optimization. Molecules, 28(6): 2715. DOI: https://doi.org/10.3390/molecules28062715
Roslan, J., Boniface, B.A., Ling, H.C., Shya, L.J., Akanda, M.J.H., Saallah, S. & Nor, M.Z.M. 2021. Effect of heat treatment on physicochemical properties of bambangan (Mangifera pajang) fruit juice. Transactions on Science and Technology, 8(3–3): 545–551.
Roslan, J., Ling, H.C., Sintang, M.D. & Saallah, S. 2020. Effect of heat treatment on rheological properties of bambangan (Mangifera pajang Kosterm) fruit juice. Advances in Agricultural and Food Research Journal, 1(2): a0000115. DOI: https://doi.org/10.36877/aafrj.a0000115
Russo, D., Kenny, O., Smyth, T.J., Milella, L., Hossain, M.B., Diop, M.S., Rai, D.K. & Brunton, N.P. 2013. Profiling of phytochemicals in tissues from Sclerocarya birrea by HPLC-MS and their link with antioxidant activity. ISRN Chromatography, 2013: 283462. DOI: https://doi.org/10.1155/2013/283462
Sakurai, Y.C.N., Pires, I.V., Ferreira, N.R., Moreira, S.G.C., Silva, L.H.M. da & Rodrigues, A.M. da C. 2024. Preparation and characterization of natural deep eutectic solvents (NADESs): Application in the extraction of phenolic compounds from araza pulp (Eugenia stipitata). Foods, 13(13): 1983. DOI: https://doi.org/10.3390/foods13131983
Socas-Rodríguez, B., Torres-Cornejo, M.V., Álvarez-Rivera, G. & Mendiola, J.A. 2021. Deep eutectic solvents for the extraction of bioactive compounds from natural sources and agricultural by-products. Applied Sciences, 11(11): 4897. DOI: https://doi.org/10.3390/app11114897
Stephenus, F.N., Benjamin, M.A.Z., Anuar, A. & Awang, M.A. 2023. Effect of temperatures on drying kinetics, extraction yield, phenolics, flavonoids, and antioxidant activity of Phaleria macrocarpa (Scheff.) Boerl. (mahkota dewa) fruits. Foods, 12(15): 2859. DOI: https://doi.org/10.3390/foods12152859
Tangah, J., Bajau, F.E., Jilimin, W., Chan, H.T., Wong, S.K. & Chan, E.W.C. 2017. Phytochemistry and pharmacology of Mangifera pajang: An iconic fruit of Sabah, Malaysia. Systematic Reviews in Pharmacy, 8(1): 86–91. DOI: https://doi.org/10.5530/srp.2017.1.15
Xu, D.-P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J.-J. & Li, H.-B. 2017. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International Journal of Molecular Sciences, 18(1): 96. DOI: https://doi.org/10.3390/ijms18010096
Yang, L., Li, L., Hu, H., Wan, J. & Li, P. 2019. Natural deep eutectic solvents for simultaneous extraction of multi-bioactive components from jinqi jiangtang preparations. Pharmaceutics, 11(1): 18. DOI: https://doi.org/10.3390/pharmaceutics11010018
Zor, M. 2024. Investigation of using natural deep eutectic solvents (NADES) for the extraction of bioactive compounds from Aronia melanocarpa fruit. Turkish Journal of Agriculture and Forestry, 48(4): 567–579. DOI: https://doi.org/10.55730/1300-011X.3202
Published
Versions
- 29-03-2025 (2)
- 27-03-2025 (1)
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Universiti Malaysia Sabah
Grant numbers SGI0166 -
Universiti Malaysia Sabah
Grant numbers SLB2234