Genome Editing for Enhanced Abiotic Stress Tolerance in Selected Cereal (Poaceae) Crops: Current Applications, Tools, and Future Perspectives
Keywords:
Abiotic stress, climate change, crop improvement, omics, plant biotechnology, staple foodAbstract
Recent progress in genome editing (GEd) technology offers an opportunity to accelerate the breeding of improved crops with enhanced resistance and high tolerance to drought and salinity. In this article, we highlight four programmable site-specific nucleases that are considered prominent GEd technologies: meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) nucleases. We then focus on the application of CRISPR/Cas9 system and access the transformation methods that have been used to deliver the system into major cereal crops including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), sorghum (Sorghum bicolor), and wheat (Triticum aestivum). This review further emphasises the applications of the CRISPR/Cas9 system to impart tolerance to two major abiotic stresses, salinity and drought, in these selected crops. Finally, we summarise bioinformatics tools that are available for cereal genome editing works, including guide RNA (gRNA) design and post-editing analysis tools. This review provides an overview of current progress, identifies research gaps, and offers perspectives for prospective scientists embarking on genome editing in cereals and related crops.
Downloads
Metrics
References
Abdallah, N.A., Elsharawy, H., Abulela, H.A., Thilmony, R., Abdelhadi, A.A. & Elarabi, N.I. 2022. Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crops & Food, 1-17. DOI: https://doi.org/10.1080/21645698.2022.2120313
Abdallah, N.A., Prakash, C.S. & McHughen, A.G. 2015. Genome editing for crop improvement: challenges and opportunities. GM Crops & Food, 6(4): 183-205. DOI: https://doi.org/10.1080/21645698.2015.1129937
Abdel-Ghany, S.E., Ullah, F., Ben-Hur, A. & Reddy, A.S. 2020. Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to PEG-induced drought stress. International Journal of Molecular Sciences, 21(3): 772. DOI: https://doi.org/10.3390/ijms21030772
Abhinandan, K., Skori, L., Stanic, M., Hickerson, N.M., Jamshed, M. & Samuel, M.A. 2018. Abiotic stress signaling in wheat - an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Frontiers in Plant Science, 9: 734. DOI: https://doi.org/10.3389/fpls.2018.00734
Al Abdallat, A.M., Ayad, J.Y., Abu Elenein, J.M., Al Ajlouni, Z. & Harwood, W.A. 2014. Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Molecular Breeding, 33(2): 401-414. DOI: https://doi.org/10.1007/s11032-013-9958-1
Al-Shayeb, B., Skopintsev, P., Soczek, K.M. et al. 2022. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell, 185(24): 4574-4586. DOI: https://doi.org/10.1016/j.cell.2022.10.020
Alam, M.S., Kong, J., Tao, R., Ahmed, T., Alamin, M., Alotaibi, S.S., Abdelsalam, N.R., Xu, J.-H. 2022. CRISPR/Cas9 mediated kockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants, 11(9): 1184. DOI: https://doi.org/10.3390/plants11091184
Allen, F., Crepaldi, L., Alsinet, C. et al. 2019. Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nature Biotechnology, 37(1): 64-72. DOI: https://doi.org/10.1038/nbt.4317
Arshadi, A., Karami, E., Sartip, A., Zare, M. & Rezabakhsh, P. 2018. Genotypes performance in relation to drought tolerance in barley using multi-environment trials. Agronomy Research, 16(1): 5-21.
Ashokkumar, S., Jaganathan, D., Ramanathan, V., Rahman, H., Palaniswamy, R., Kambale, R. & Muthurajan, R. 2020. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PloS One, 15(8): e0237018. DOI: https://doi.org/10.1371/journal.pone.0237018
Awan, T.H., Ahmadizadeh, M., Jabran, K., Hashim, S. & Chauhan, B.S. 2017. Domestication and development of rice cultivars. In: Rice Production Worldwide. B. Chauhan, K. Jabran & G. Mahajan (Eds.). Springer Switzerland, Cham, pp. 207-216. DOI: https://doi.org/10.1007/978-3-319-47516-5_9
Awika, J.M. 2011. Major cereal grains production and use around the world. In: Advances in Cereal Science: Implications to Food Processing and Health Promotion. J.M. Awika, V. Piironen & S. Bean (Eds.). ACS Symposium Series. American Chemical Society, Washington, DC, pp. 1-13. DOI: https://doi.org/10.1021/bk-2011-1089.ch001
Baer, M., Taramino, G., Multani, D., Sakai, H., Jiao, S., Fengler, K. & Hochholdinger, F. 2023. Maize lateral rootless 1 encodes a homolog of the DCAF protein subunit of the CUL4‐based E3 ubiquitin ligase complex. New Phytologist, 237(4): 1204-1214. DOI: https://doi.org/10.1111/nph.18599
Bahariah, B., Masani, M.Y.A., Rasid, O.A. & Parveez, G.K.A. 2021. Multiplex CRISPR/Cas9-mediated genome editing of the FAD2 gene in rice: a model genome editing system for oil palm. Journal of Genetic Engineering and Biotechnology, 19(1): 86. DOI: https://doi.org/10.1186/s43141-021-00185-4
Banakar, R., Eggenberger, A.L., Lee, K., Wright, D.A., Murugan, K., Zarecor, S., Lawrence-Dill, C.J., Sashital, D.G. & Wang, K. 2019. High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice. Scientific Reports, 9(1): 19902. DOI: https://doi.org/10.1038/s41598-019-55681-y
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A. & Horvath, P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819): 1709-1712. DOI: https://doi.org/10.1126/science.1138140
Bhandawat, A., Sharma, V., Rishi V. & Roy J.K. 2020. Biolistic delivery of programmable nuclease (CRISPR/Cas9) in bread wheat. Methods in Molecular Biology, 2124: 309-329. DOI: https://doi.org/10.1007/978-1-0716-0356-7_17
Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A. & Bonas, U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959): 1509-1512. DOI: https://doi.org/10.1126/science.1178811
Brandt, K.M., Gunn, H., Moretti, N. & Zemetra, R.S. 2020. A streamlined protocol for wheat (Triticum aestivum) protoplast isolation and transformation with CRISPR-Cas ribonucleoprotein complexes. Frontiers in Plant Science, 11: 769. DOI: https://doi.org/10.3389/fpls.2020.00769
Brant, E.J., Baloglu, M.C., Parikh, A. & Altpeter, F. 2021 CRISPR/Cas9 mediated targeted mutagenesis of LIGULELESS‐1 in sorghum provides a rapidly scorable phenotype by altering leaf inclination angle. Biotechnology Journal, 16(11): 2100237. DOI: https://doi.org/10.1002/biot.202100237
Brazelton Jr, V.A., Zarecor, S., Wright, D.A., Wang, Y., Liu, J., Chen, K., Yang, B. & Lawrence-Dill, C.J. 2015. A quick guide to CRISPR sgRNA design tools. GM Crops & Food, 6(4): 266-276. DOI: https://doi.org/10.1080/21645698.2015.1137690
Brinkman, E.K., Chen, T., Amendola, M. & van Steensel, B. 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research, 42(22): e168. DOI: https://doi.org/10.1093/nar/gku936
Brinkman, E.K., Kousholt, A.N., Harmsen, T., Leemans, C., Chen, T., Jonkers, J. & van Steensel, B. 2018. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res, 46(10): e58. DOI: https://doi.org/10.1093/nar/gky164
Broothaerts, W., Jacchia, S., Angers, A., Petrillo, M., Querci, M., Savini, C., Van den Eede, G. & Emons, H. 2021. New genomic techniques: state-of-the-art review. Publications Office of the European Union, Luxembourg.
Buchholzer, M. & Frommer, W.B. 2023. An increasing number of countries regulate genome editing in crops. New Phytologist, 237: 12-15. DOI: https://doi.org/10.1111/nph.18333
Budhagatapalli, N., Rutten, T., Gurushidze, M., Kumlehn, J. & Hensel, G. 2015. Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-strand breaks in barley. G3: Genes, Genomes, Genetics, 5(9): 1857-1863. DOI: https://doi.org/10.1534/g3.115.018762
Calderini, D.F. & Slafer, G.A. 1998. Changes in yield and yield stability in wheat during the 20th century. Field Crops Research, 57(3): 335-347. DOI: https://doi.org/10.1016/S0378-4290(98)00080-X
Chanikornpradit, M. 2024. Thailand's significant move on genome editing technology legislation (Report No. TH2024-0047). United States Department of Agriculture, Foreign Agricultural.
Char, S.N., Lee, H. & Yang, B. 2020a. Use of CRISPR/Cas9 for targeted mutagenesis in sorghum. Current Protocols in Plant Biology, 5(2): e20112. DOI: https://doi.org/10.1002/cppb.20112
Char, S.N., Neelakandan, A.K., Nahampun, H., Frame, B., Main, M., Spalding, M.H., Becraft, P.W., Meyers, B.C., Walbot, V., Wang, K. & Yang, B., 2017. An Agrobacterium‐delivered CRISPR/Cas9 system for high‐frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 15(2): 257-268. DOI: https://doi.org/10.1111/pbi.12611
Char, S.N., Wei, J., Mu, Q., Li, X., Zhang, Z.J., Yu, J. & Yang, B. 2020b. An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnology Journal, 18(2): 319-321. DOI: https://doi.org/10.1111/pbi.13229
Che, P., Anand, A., Wu, E., Sander, J.D., Simon, M.K., Zhu, W., Sigmund, A.L., Zastrow‐Hayes, G., Miller, M., Liu, D. & Lawit, S.J. 2018. Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnology Journal, 16(7): 1388-1395. DOI: https://doi.org/10.1111/pbi.12879
Chen, W., Zhang, G., Li, J., Zhang, X., Huang, S., Xiang, S., Hu, X. & Liu, C. 2019. CRISPRlnc: a manually curated database of validated sgRNAs for lncRNAs. Nucleic Acids Research, 47(D1): D63-D68. DOI: https://doi.org/10.1093/nar/gky904
Chevalier, B., Sussman, D., Otis, C., Noël, A.J., Turmel, M., Lemieux, C., Stephens, K., Monnat, R.J. & Stoddard, B.L. 2004. Metal-dependent DNA cleavage mechanism of the I-Cre I LAGLIDADG homing endonuclease. Biochemistry, 43: 14015-14026. DOI: https://doi.org/10.1021/bi048970c
Choudhary, M., Singh, A., Gupta, M. & Rakshit, S. 2020. Enabling technologies for utilization of maize as a bioenergy feedstock. Biofuels, Bioproducts and Biorefining, 14(2): 402-416. DOI: https://doi.org/10.1002/bbb.2060
Chowdhury, N., Das, D., Sarki, Y.N., Sharma, M., Singha, D.L. & Chikkaputtaiah, C. 2022. Genome editing and CRISPR-Cas technology for enhancing abiotic stress tolerance in cereals. In: Omics Approach to Manage Abiotic Stress in Cereals. A. Roychoudhury, T. Aftab & K. Acharya (Eds.). Springer, Singapore. pp 259-294. DOI: https://doi.org/10.1007/978-981-19-0140-9_11
Clottey, V., Wairegi, L.W.I., Bationo, B.A., Mando, A. & Kanton, R. 2014. Sorghum- and millet-legume cropping guide. Africa Soil Health Consortium, Nairobi.
Comas, L.H., Becker, S.R., Cruz, V.M.V., Byrne, P.F. & Dierig, D.A. 2013. Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4: 442. DOI: https://doi.org/10.3389/fpls.2013.00442
Conant, D., Hsiau, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso, R., Holden, K. & Enzmann, B.L. 2022. Inference of CRISPR edits from Sanger trace data. The CRISPR Journal, 5(1): 123-130. DOI: https://doi.org/10.1089/crispr.2021.0113
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. & Zhang, F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819-823. DOI: https://doi.org/10.1126/science.1231143
Cram, D., Kulkarni, M., Buchwaldt, M., Rajagopalan, N., Bhowmik, P., Rozwadowski, K., Parkin, I.A., Sharpe, A.G. & Kagale, S. 2019. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat. BMC Plant Biology, 19: 474. DOI: https://doi.org/10.1186/s12870-019-2097-z
Dagdas, Y.S., Chen, J.S., Sternberg, S.H., Doudna, J.A. & Yildiz, A. 2017. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Science Advances, 3: eaao0027. DOI: https://doi.org/10.1126/sciadv.aao0027
Derby, N.E., Steele, D.D., Terpstra, J., Knighton, R.E. & Casey, F.X. 2005. Interactions of nitrogen, weather, soil, and irrigation on corn yield. Agronomy Journal, 97: 1342-1351. DOI: https://doi.org/10.2134/agronj2005.0051
Do, P.T., Lee, H., Mookkan, M., Folk, W.R. & Zhang, Z.J. 2016. Rapid and efficient Agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker. Plant Cell Reports, 35: 2065-2076. DOI: https://doi.org/10.1007/s00299-016-2019-6
Dong, O.X. & Ronald, P.C., 2021. Targeted DNA insertion in plants. Proceedings of the National Academy of Sciences, 118(22): p.e2004834117. DOI: https://doi.org/10.1073/pnas.2004834117
Dong, O.X., Yu, S., Jain, R., Zhang, N., Duong, P.Q., Butler, C., Li, Y., Lipzen, A., Martin, J.A., Barry, K.W. & Schmutz, J. 2020. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications, 11: 1178. DOI: https://doi.org/10.1038/s41467-020-14981-y
Donoso, T. 2021. Standardizing the CRISPR-Cas9 system in oat to understand beta-glucan regulation. MSc thesis, McGill University. https://escholarship.mcgill.ca/concern/theses/7p88cn79j. Accessed October 2022.
Dutt, M., Mou, Z., Zhang, X., Tanwir, S.E. & Grosser, J.W. 2020. Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures. BMC Biotechnology, 20: 58. DOI: https://doi.org/10.1186/s12896-020-00652-9
Esim, N. & Atici, Ö. 2016. Relationships between some endogenous signal compounds and the antioxidantsystem in response to chilling stress in maize (Zea mays L.) seedlings. Turkish Journal of Botany, 40: 37-44. DOI: https://doi.org/10.3906/bot-1408-59
Farhat, S., Jain, N., Singh, N., Sreevathsa, R., Dash, P.K., Rai, R., Yadav, S., Kumar, P., Sarkar, A.K., Jain, A., Singh, N.K. & Rai, V. 2019. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Seminars in Cell Development & Biology, 96: 91-99. DOI: https://doi.org/10.1016/j.semcdb.2019.05.003
Flick, K.E., Jurica, M.S., Monnat Jr, R.J. & Stoddard, B.L. 1998. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature, 394: 96-101. DOI: https://doi.org/10.1038/27952
Gaj, T., Gersbach, C.A. & Barbas III, C.F. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31: 397-405. DOI: https://doi.org/10.1016/j.tibtech.2013.04.004
Gasparis, S., Przyborowski, M., Kała, M. & Nadolska-Orczyk, A. 2019. Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cells, 8(8):782. DOI: https://doi.org/10.3390/cells8080782
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K. & Wiltshire, A. 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 2973-2989. DOI: https://doi.org/10.1098/rstb.2010.0158
Gürel, F., Öztürk, Z.N., Uçarlı, C. & Rosellini, D. 2016. Barley genes as tools to confer abiotic stress tolerance in crops. Frontiers in Plant Science, 7: 1137. DOI: https://doi.org/10.3389/fpls.2016.01137
Habben, J.E., Bao, X., Bate, N.J., DeBruin, J.L., Dolan, D., Hasegawa, D., Helentjaris, T.G., Lafitte, R.H., Lovan, N., Mo, H. & Reimann, K. 2014. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought‐stress conditions. Plant Biotechnology Journal, 12: 685-693. DOI: https://doi.org/10.1111/pbi.12172
Hamada, H., Liu, Y., Nagira, Y., Miki, R., Taoka, N. & Imai, R. 2018. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Science Reports, 8: 1-7. DOI: https://doi.org/10.1038/s41598-018-32714-6
Han, X., Chen, Z., Li, P., Xu, H., Liu, K., Zha, W., Li, S., Chen, J., Yang, G., Huang, J., & You, A. 2022. Development of novel rice germplasm for salt-tolerance at seedling stage using CRISPR-Cas9. Sustainability, 14: 2621. DOI: https://doi.org/10.3390/su14052621
Harwood, W.A. 2019. An introduction to barley: the crop and the model. In: Barley. Methods in Molecular Biology. W. Harwood (Ed.). Humana Press, New York. DOI: https://doi.org/10.1007/978-1-4939-8944-7
He, C., Liu, H., Chen, D., Xie, W.Z., Wang, M., Li, Y., Gong, X., Yan, W. & Chen, L.L. 2021. CRISPR‐Cereal: a guide RNA design tool integrating regulome and genomic variation for wheat, maize and rice. Plant Biotechnology Journal, 19: 2141-2143. DOI: https://doi.org/10.1111/pbi.13675
Heigwer, F., Kerr, G. & Boutros, M. 2014. E-CRISP: fast CRISPR target site identification. Nature Methods, 11: 122-123. DOI: https://doi.org/10.1038/nmeth.2812
Hille, F., Richter, H., Wong, S.P., Bratovič, M., Ressel, S. & Charpentier, E. 2018. The biology of CRISPR-Cas: backward and forward. Cell, 172: 1239-1259. DOI: https://doi.org/10.1016/j.cell.2017.11.032
Hussain, B., Lucas, S.J. & Budak, H. 2018. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Briefings in Functional Genomics, 17: 319-328. DOI: https://doi.org/10.1093/bfgp/ely016
Hussin, S.H., Liu, X., Li, C., Diaby, M., Jatoi, G.H., Ahmed, R., Imran, M. & Iqbal, M.A. 2022. An updated overview on insights into sugarcane genome editing via CRISPR/Cas9 for sustainable production. Sustainability, 14: 12285. DOI: https://doi.org/10.3390/su141912285
Hwang, H.H., Yu, M. & Lai, E.M. 2017. Agrobacterium-mediated plant transformation: biology and applications. The Arabidopsis Book, 15: e0186. DOI: https://doi.org/10.1199/tab.0186
Igartua, E., Gracia, M.P. & Lasa, J.M. 1994. Characterization and genetic control of germination-emergence responses of grain sorghum to salinity. Euphytica, 76: 185-193. DOI: https://doi.org/10.1007/BF00022163
Imai, R., Hamada, H., Liu, Y., Linghu, Q., Kumagai, Y., Nagira, Y., Miki, R. & Taoka, N. 2020. In planta particle bombardment (iPB): a new method for plant transformation and genome editing. Plant Biotechnology, 37: 171-176. DOI: https://doi.org/10.5511/plantbiotechnology.20.0206a
Iqbal, Z., Iqbal, M.S., Ahmad, A., Memon, A.G. & Ansari, M.I. 2020. New prospects on the horizon: genome editing to engineer plants for desirable traits. Current Plant Biology, 24: 100171. DOI: https://doi.org/10.1016/j.cpb.2020.100171
Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. & Weeks, D.P. 2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41: e188. DOI: https://doi.org/10.1093/nar/gkt780
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816-821. DOI: https://doi.org/10.1126/science.1225829
Joung, J.K. & Sander, J.D. 2013. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14: 49-55. DOI: https://doi.org/10.1038/nrm3486
Juillerat, A., Pessereau, C., Dubois, G., Guyot, V., Maréchal, A., Valton, J., Daboussi, F., Poirot, L., Duclert, A. & Duchateau, P. 2015. Optimized tuning of TALEN specificity using non-conventional RVDs. Scientific Reports, 5: 8150. DOI: https://doi.org/10.1038/srep08150
Jung, C. & Till, B. 2021. Mutagenesis and genome editing in crop improvement: perspectives for the global regulatory landscape. Trends in Plant Science, 26(12): 1258-1269. DOI: https://doi.org/10.1016/j.tplants.2021.08.002
Jung, J., Won, S.Y., Suh, S.C., Kim, H., Wing, R., Jeong, Y., Hwang, I. & Kim, M. 2007. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta, 225: 575-588. DOI: https://doi.org/10.1007/s00425-006-0373-2
Kalidasan, V. & Theva Das, K. 2021. Is Malaysia ready for human gene editing: a regulatory, biosafety and biosecurity perspective. Frontiers in Bioengineering and Biotechnology, 9: 649203. DOI: https://doi.org/10.3389/fbioe.2021.649203
Kapusi, E., Corcuera-Gómez, M., Melnik, S. & Stoger, E. 2017. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Frontiers in Plant Science, 8: 540. DOI: https://doi.org/10.3389/fpls.2017.00540
Khalil, A.M. 2020. The genome editing revolution: review. Journal of Genetic Engineering and Biotechnology, 18(1): 68. DOI: https://doi.org/10.1186/s43141-020-00078-y
Kim, D., Alptekin, B. & Budak, H. 2018. CRISPR/Cas9 genome editing in wheat. Functional & Integrative Genomics, 18(1): 31-41. DOI: https://doi.org/10.1007/s10142-017-0572-x
Kim, M.-S., Ko, S.-R., Jung, Y.J., Kang, K.-K., Lee, Y.-J., Cho, Y.-G. 2023. Knockout mutants of OsPUB7 generated using CRISPR/Cas9 revealed abiotic stress tolerance in rice. International Journal of Molecular Sciences, 24: 5338. DOI: https://doi.org/10.3390/ijms24065338
Křenek, P., Chubar, E., Vadovič, P., Ohnoutková, L., Vlčko, T., Bergougnoux, V., Cápal, P., Ovečka, M. & Šamaj, J. 2021. CRISPR/Cas9-induced loss-of-function mutation in the barley mitogen-activated protein kinase 6 gene causes abnormal embryo development leading to severely reduced grain germination and seedling shootless phenotype. Frontiers in Plant Science, 12: 670302. DOI: https://doi.org/10.3389/fpls.2021.670302
Labuhn, M., Adams, F.F., Ng, M., Knoess, S., Schambach, A., Charpentier, E.M., Schwarzer, A., Mateo, J.L., Klusmann, J.H. & Heckl, D. 2018. Refined sgRNA efficacy prediction improves large-and small-scale CRISPR-Cas9 applications. Nucleic Acids Research, 46(3): 1375-1385. DOI: https://doi.org/10.1093/nar/gkx1268
Laforest, L.C. & Nadakuduti, S.S. 2022. Advances in delivery mechanisms of CRISPR gene-editing reagents in plants. Frontiers in Genome Editing, 4: 830178. DOI: https://doi.org/10.3389/fgeed.2022.830178
Lan, T., Zheng, Y., Su, Z., Yu, S., Song, H., Zheng, X., Lin, G. & Wu, W. 2019. OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.). G3: Genes, Genomes, Genetics, 9(12): 4107-4114. DOI: https://doi.org/10.1534/g3.119.400700
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10: R25. DOI: https://doi.org/10.1186/gb-2009-10-3-r25
Lawrenson, T. & Harwood, W.A. 2019. Creating targeted gene knockouts in barley using CRISPR/Cas9. In: Barley. Methods in Molecular Biology. W. Harwood (Ed.). Humana Press, New York, pp 217-232. DOI: https://doi.org/10.1007/978-1-4939-8944-7_14
Le Rhun, A., Escalera-Maurer, A., Bratovič, M. & Charpentier, E. 2019. CRISPR-Cas in Streptococcus pyogenes. RNA Biology, 16(4): 380-389. DOI: https://doi.org/10.1080/15476286.2019.1582974
Leenay, R.T., Aghazadeh, A., Hiatt, J., Tse, D., Roth, T.L., Apathy, R., Shifrut, E., Hultquist, J.F., Krogan, N., Wu, Z. & Cirolia, G. 2019. Large dataset enables prediction of repair after CRISPR-Cas9 editing in primary T cells. Nature Biotechnology, 37: 1034-1037. DOI: https://doi.org/10.1038/s41587-019-0203-2
Lei, Y., Lu, L., Liu, H.Y., Li, S., Xing, F. & Chen, L.L. 2014. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant, 7: 1494-1496. DOI: https://doi.org/10.1093/mp/ssu044
Li, A., Jia, S., Yobi, A., Ge, Z., Sato, S.J., Zhang, C., Angelovici, R., Clemente, T.E. & Holding, D.R. 2018. Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiology, 177: 1425-1438. DOI: https://doi.org/10.1104/pp.18.00200
Li, J., Wang, Z., Chang, Z., He, H., Tang, X., Ma, L. & Deng, X.W. 2021. A functional characterization of TaMs1 orthologs in Poaceae plants. The Crop Journal, 9: 1291-1300. DOI: https://doi.org/10.1016/j.cj.2020.12.002
Li, T., Huang, S., Zhao, X., Wright, D.A., Carpenter, S., Spalding, M.H., Weeks, D.P. & Yang, B. 2011. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 39: 6315-6325. DOI: https://doi.org/10.1093/nar/gkr188
Liang, Z., Wu, Y., Ma, L., Guo, Y. & Ran, Y. 2021. Efficient genome editing in Setaria italica using CRISPR/Cas9 and base editors. Frontiers in Plant Science, 12: 815946. DOI: https://doi.org/10.3389/fpls.2021.815946
Liang, Z., Zhang, K., Chen, K. & Gao, C. 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41: 63-68. DOI: https://doi.org/10.1016/j.jgg.2013.12.001
Liao, S., Qin, X., Luo, L., Han, Y., Wang, X., Usman, B., Nawaz, G., Zhao, N., Liu, Y. & Li, R. 2019. CRISPR/Cas9-induced mutagenesis of Semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy, 9: 728. DOI: https://doi.org/10.3390/agronomy9110728
Linares, O.F. 2002. African rice (Oryza glaberrima): history and future potential. Proceedings of the National Academy of Sciences, 99: 16360-16365. DOI: https://doi.org/10.1073/pnas.252604599
Liu, G., Li, J. & Godwin, I.D. 2019. Genome editing by CRISPR/Cas9 in sorghum through biolistic bombardment. In: Sorghum. Methods in Molecular Biology, vol 1931. Z.Y. Zhao & J. Dahlberg (Eds.). Humana Press, New York, pp 169-183. DOI: https://doi.org/10.1007/978-1-4939-9039-9_12
Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K. & Chen, L.L. 2017. CRISPR-P 2.0: an Improved CRISPR-Cas9 tool for genome editing in plants. Molecular Plant, 10: 530-532. DOI: https://doi.org/10.1016/j.molp.2017.01.003
Liu, S., Li, C., Wang, H., Wang, S., Yang, S., Liu, X., Yan, J., Li, B., Beatty, M., Zastrow-Hayes, G. & Song, S. 2020. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biology, 21: 163. DOI: https://doi.org/10.1186/s13059-020-02069-1
Liu, T.Y. & Doudna, J.A. 2020. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. Journal of Biological Chemistry, 295(42): 14473-14487. DOI: https://doi.org/10.1074/jbc.REV120.007034
Liu, W., Xie, X., Ma, X., Li, J., Chen, J. & Liu, Y.G. 2015. DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Molecular Plant, 8: 1431-1433. DOI: https://doi.org/10.1016/j.molp.2015.05.009
Lloyd, J.R. & Kossmann, J. 2021. Improving crops for a changing world. Frontiers in Plant Science, 12: 728328. DOI: https://doi.org/10.3389/fpls.2021.728328
Ma, X., Chen, L., Zhu, Q., Chen, Y. & Liu, Y.G. 2015. Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products. Molecular Plant, 8: 1285-1287. DOI: https://doi.org/10.1016/j.molp.2015.02.012
MacNeish, R.S. & Eubanks, M.W. 2000. Comparative analysis of the Rio Balsas and Tehuacan models for the origin of maize. Latin American Antiquity, 11: 3-20. DOI: https://doi.org/10.2307/1571668
Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I. & Koonin, E.V. 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1: 7. DOI: https://doi.org/10.1186/1745-6150-1-7
Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft, D.H., Horvath, P., Moineau, S., Mojica, F.J.M., Terns, R.M., Terns, M.P., White, M.F., Yakunin, A.F., Garrett, R.A., van der Oost, J., Backofen, R. & Koonin, E.V. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 13(11): 722-736. DOI: https://doi.org/10.1038/nrmicro3569
Malzahn, A., Lowder, L. & Qi, Y. 2017. Plant genome editing with TALEN and CRISPR. Cell & Bioscience, 7(1): 21. DOI: https://doi.org/10.1186/s13578-017-0148-4
Md Yusof, A.A., Tamizi, A.-A., Mohd-Zim, N.A., Sattar, S.S., Salleh, M.S., Azmi, N.S., Zainal, Z., Zainuddin, Z. & Samsulrizal, N.H. 2023. Development of CRISPR/Cas9 construct in rice (Oryza sativa subsp. indica) using Golden Gate cloning method towards drought tolerance. Journal of Tropical Life Science, 13(2): 257-276. DOI: https://doi.org/10.11594/jtls.13.02.04
Michalski, K., Ziąbska, P., Sowa, S., Zimny, J. & Linkiewicz, A.M. 2023. Evaluation of CRISPR/Cas9 constructs in wheat cell suspension cultures. International Journal of Molecular Sciences, 24(3): 2162. DOI: https://doi.org/10.3390/ijms24032162
Miller, J.C., Zhang, L., Xia, D.F. et al. 2015. Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nature Methods, 12(5): 465-471. DOI: https://doi.org/10.1038/nmeth.3330
Miller, K., Eggenberger, A.L., Lee, K., Liu, F., Kang, M., Drent, M., Ruba, A., Kirscht, T., Wang, K. & Jiang, S. 2021. An improved biolistic delivery and analysis method for evaluation of DNA and CRISPR-Cas delivery efficacy in plant tissue. Scientific Reports, 11(1): 7695. DOI: https://doi.org/10.1038/s41598-021-86549-9
Mojica, F.J., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2): 174-182. DOI: https://doi.org/10.1007/s00239-004-0046-3
Molla, K.A. & Yang, Y. 2019. Predicting CRISPR/Cas9-induced mutations for precise genome editing. Trends in Biotechnology, 38(2): 136-141. DOI: https://doi.org/10.1016/j.tibtech.2019.08.002
Molla, K.A., Shih, J., Wheatley, M.S. & Yang, Y. 2022. Predictable NHEJ insertion and assessment of HDR editing strategies in plants. Frontiers in Genome Editing, 4: 825236. DOI: https://doi.org/10.3389/fgeed.2022.825236
Moon, S.B., Kim, D.Y., Ko, J.H. & Kim, Y.S. 2019. Recent advances in the CRISPR genome editing tool set. Experimental & Molecular Medicine, 51: 1-11. DOI: https://doi.org/10.1038/s12276-019-0339-7
Mussolino, C. & Cathomen, T. 2012. TALE nucleases: tailored genome engineering made easy. Current Opinion in Biotechnology, 23(5): 644-650. DOI: https://doi.org/10.1016/j.copbio.2012.01.013
Naito, Y., Hino, K., Bono, H. & Ui-Tei, K. 2015. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 31(7): 1120-1123. DOI: https://doi.org/10.1093/bioinformatics/btu743
Neumann, K., Verburg, P.H., Stehfest, E. & Müller, C. 2010. The yield gap of global grain production: a spatial analysis. Agricultural Systems, 103(5): 316-326. DOI: https://doi.org/10.1016/j.agsy.2010.02.004
Nidhi, S., Anand, U., Oleksak, P., Tripathi, P., Lal, J.A., Thomas, G., Kuca, K. & Tripathi, V. 2021. Novel CRISPR-Cas systems: an updated review of the current achievements, applications, and future research perspectives. International Journal of Molecular Sciences, 22(7): 3327. DOI: https://doi.org/10.3390/ijms22073327
Nishimasu, H., Cong, L., Yan, W.X., Ran, F.A., Zetsche, B., Li, Y., Kurabayashi, A., Ishitani, R., Zhang, F. & Nureki, O. 2015. Crystal structure of Staphylococcus aureus Cas9. Cell, 162(5): 1113-1126. DOI: https://doi.org/10.1016/j.cell.2015.08.007
Nurdiani, D., Widyajayantie, D. & Nugroho, S. 2018. OsSCE1 encoding SUMO E2-conjugating enzyme involves in drought stress response of Oryza sativa. Rice Science, 25(2): 73-81. DOI: https://doi.org/10.1016/j.rsci.2017.11.002
OECD/FAO. 2022. Cereals. In: OECD-FAO Agricultural Outlook 2022-2031. Organisation for Economic Co-operation and Development - Food and Agriculture Organization of the United Nations.
Ogata, T., Ishizaki, T., Fujita, M. & Fujita, Y. 2020. CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS One, 15(12): e0243376. DOI: https://doi.org/10.1371/journal.pone.0243376
Okada, A., Arndell, T., Borisjuk, N., Sharma, N., Watson‐Haigh, N.S., Tucker, E.J., Baumann, U., Langridge, P. & Whitford, R. 2019. CRISPR/Cas9‐mediated knockout of Ms1 enables the rapid generation of male‐sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 17(10): 1905-1913. DOI: https://doi.org/10.1111/pbi.13106
Oliveros, J.C., Franch, M., Tabas-Madrid, D., San-León, D., Montoliu, L., Cubas, P. & Pazos, F. 2016. Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Research, 44(W1): W267-W271. DOI: https://doi.org/10.1093/nar/gkw407
Osakabe, Y. & Osakabe, K. 2015. Genome editing with engineered nucleases in plants. Plant Cell Physiology, 56(3): 389-400. DOI: https://doi.org/10.1093/pcp/pcu170
Oz, M.T., Altpeter, A., Karan, R., Merotto, A. & Altpeter, F. 2021. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Frontiers in Genome Editing, 3: 673566. DOI: https://doi.org/10.3389/fgeed.2021.673566
Pellegrini, R. 2016. Edit single bases with Benchling! https://blog.benchling.com/2016/07/18/base-editor. Accessed 18 October 2022.
Radin Firdaus, R.B., Tan, M.L., Rahmat, S.R. & Gunaratne, M.S. 2020. Paddy, rice and food security in Malaysia: a review of climate change impacts. Cogent Social Sciences, 6(1): 1818373. DOI: https://doi.org/10.1080/23311886.2020.1818373
Ranum, P., Peña‐Rosas, J.P. & Garcia‐Casal, M.N. 2014. Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312: 105-112. DOI: https://doi.org/10.1111/nyas.12396
Razalli, I.I., Abdullah-Zawawi, M.R., Tamizi, A.A., Harun, S., Zainal-Abidin, R.A., Jalal, M.I.A., Ullah, M.A. & Zainal, Z., 2025. Accelerating crop improvement via integration of transcriptome-based network biology and genome editing. Planta, 261: 92. DOI: https://doi.org/10.1007/s00425-025-04666-5
Roychoudhury, A., Paul, S. & Basu, S. 2013. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Reports, 32(7): 985-1006. DOI: https://doi.org/10.1007/s00299-013-1414-5
Ruja, A., Toma, I., Bulai, A., Agapie, A.L., Negrut, G., Suhai, K. & Gorinoiu, G. 2021. The impact of climate changes on production in the autumn and spring oats. Life Science and Sustainable Development, 2(2): 73-81. DOI: https://doi.org/10.58509/lssd.v2i2.131
Saha, D., Panda, A.K. & Datta, S. 2025. Critical considerations and computational tools in plant genome editing. Heliyon, 11(1): e41135. DOI: https://doi.org/10.1016/j.heliyon.2024.e41135
Saisho, D. & Takeda, K. 2011. Barley: emergence as a new research material of crop science. Plant Cell Physiology, 52(5): 724-727. DOI: https://doi.org/10.1093/pcp/pcr049
Saleh, A.S.M, Zhang, Q., Chen, J. & Shen, Q. 2013. Millet grains: nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 12(3): 281-295. DOI: https://doi.org/10.1111/1541-4337.12012
Sandhya, D., Jogam, P., Allini, V.R., Abbagani, S. & Alok, A. 2020. The present and potential future methods for delivering CRISPR/Cas9 components in plants. Journal of Genetic Engineering and Biotechnology, 18(1): 25. DOI: https://doi.org/10.1186/s43141-020-00036-8
Sant'Ana, R.R.A., Caprestano, C.A., Nodari, R.O. & Agapito-Tenfen, S.Z. 2020. PEG-Delivered CRISPR-Cas9 ribonucleoproteins system for gene-editing screening of maize protoplasts. Genes, 11(9): 1029. DOI: https://doi.org/10.3390/genes11091029
Santosh Kumar, V.V., Verma, R.K., Yadav, S.K., Yadav, P., Watts, A., Rao, M.V. & Chinnusamy, V. 2020. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants, 26(6): 1099-1110. DOI: https://doi.org/10.1007/s12298-020-00819-w
Shan, Q., Wang, Y., Li, J. & Gao, C. 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9(10): 2395-2410. DOI: https://doi.org/10.1038/nprot.2014.157
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L. & Gao, C. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8): 686-688. DOI: https://doi.org/10.1038/nbt.2650
Shelake, R.M., Kadam, U.S., Kumar, R., Pramanik, D., Singh, A.K. & Kim, J.Y. 2022. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: targets, tools, challenges, and perspectives. Plant Communications, 3(6): 100417. DOI: https://doi.org/10.1016/j.xplc.2022.100417
Shen, B.W., Landthaler, M., Shub, D.A. and Stoddard, B.L., 2004. DNA binding and cleavage by the HNH homing endonuclease I-HmuI. Journal of Molecular Biology, 342(1): 43-56. DOI: https://doi.org/10.1016/j.jmb.2004.07.032
Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Hakimi, S.M., Mo, H. & Habben, J.E. 2017. ARGOS8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2): 207-216. DOI: https://doi.org/10.1111/pbi.12603
Shufen, C., Yicong, C., Baobing, F., Guiai, J., Zhonghua, S., Ju, L.U., Shaoqing, T., Jianlong, W., Peisong, H. & Xiangjin, W. 2019. Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation. Rice Science, 26(2): 77-87. DOI: https://doi.org/10.1016/j.rsci.2018.07.001
Siegner, S.M., Karasu, M.E., Schröder, M.S., Kontarakis, Z. & Corn, J.E. 2021. PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics, 22(1): 101. DOI: https://doi.org/10.1186/s12859-021-04034-6
Silva, G., Poirot, L., Galetto, R., Smith, J., Montoya, G., Duchateau, P. & Pâques, F. 2011. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Current Gene Therapy, 11(1): 11-27. DOI: https://doi.org/10.2174/156652311794520111
Sladen, P.E., Perdigão, P.R., Salsbury, G., Novoselova, T., van der Spuy, J., Chapple, J.P., Yu-Wai-Man, P. & Cheetham, M.E. 2021. CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial homeostasis in dominant optic atrophy patient-derived iPSCs. Molecular Therapy Nucleic Acids, 26: 432-443. DOI: https://doi.org/10.1016/j.omtn.2021.08.015
Sledzinski, P., Nowaczyk, M. & Olejniczak, M. 2020. Computational tools and resources supporting CRISPR-Cas experiments. Cells, 9(5): 1288. DOI: https://doi.org/10.3390/cells9051288
Song, B., Yang, S., Hwang, G.-H., Yu, J. & Bae, S. 2021. Analysis of NHEJ-based DNA repair after CRISPR-Mediated DNA cleavage. International Journal of Molecular Sciences, 22(12): 6397. DOI: https://doi.org/10.3390/ijms22126397
Soreng, R.J., Peterson, P.M., Romaschenko, K., Davidse, G., Zuloaga, F.O., Judziewicz, E.J., Filgueiras, T.S., Davis, J.I. & Morrone, O. 2015. A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution, 53(2): 117-137. DOI: https://doi.org/10.1111/jse.12150
Spök, A., Sprink, T., Allan, A.C., Yamaguchi, T. & Dayé, C. 2022. Towards social acceptability of genome-edited plants in industrialised countries? Emerging evidence from Europe, United States, Canada, Australia, New Zealand, and Japan. Frontiers in Genome Editing, 4: 899331. DOI: https://doi.org/10.3389/fgeed.2022.899331
Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J. & Mateo, J.L. 2015. Correction: CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PloS One, 12(4): e0176619. DOI: https://doi.org/10.1371/journal.pone.0176619
Stoddard, B.L. 2005. Homing endonuclease structure and function. Quarterly Reviews of Biophysics, 38(1): 49-95. DOI: https://doi.org/10.1017/S0033583505004063
Sun, J., Liu, H., Liu, J., Cheng, S., Peng, Y., Zhang, Q., Yan, J., Liu, H.J. & Chen, L.L. 2019. CRISPR-Local: a local single-guide RNA (sgRNA) design tool for non-reference plant genomes. Bioinformatics, 35(14): 2501-2503. DOI: https://doi.org/10.1093/bioinformatics/bty970
Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K. & Mark Cigan, A. 2016. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 7: 13274. DOI: https://doi.org/10.1038/ncomms13274
Svitashev, S., Young, J.K., Schwartz, C., Gao, H., Falco, S.C. & Cigan, A.M. 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169(2): 931-945. DOI: https://doi.org/10.1104/pp.15.00793
Takáč, T., Křenek, P., Komis, G., Vadovič, P., Ovečka, M., Ohnoutková, L., Pechan, T., Kašpárek, P., Tichá, T., Basheer, J., Arick, M.II. & Šamaj, J. 2021. TALEN-based HvMPK3 knock-out attenuates proteome and root hair phenotypic responses to flg22 in barley. Frontiers in Plant Science, 12: 666229. DOI: https://doi.org/10.3389/fpls.2021.666229
Tamizi, A.A., Md-Yusof, A.A., Mohd-Zim, N.A., Nazaruddin N.H., Sekeli, R., Zainuddin, Z. & Samsulrizal, N.H. 2023. Agrobacterium-mediated in planta transformation of cut coleoptile: a new, simplified, and tissue culture-independent method to deliver the CRISPR/Cas9 system in rice. Molecular Biology Reports, 50(11): 9353-9366. DOI: https://doi.org/10.1007/s11033-023-08842-2
Uluisik, S., Chapman, N.H., Smith, R. et al. 2016. Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology, 34(9): 950-952. DOI: https://doi.org/10.1038/nbt.3602
United Nations. 2022. World population to reach 8 billion this year, as growth rate slows. https://news.un.org/en/story/2022/07/1122272. Accessed November 2022.
Uniyal, A.P., Mansotra, K., Yadav, S.K. & Kumar, V. 2019. An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants. 3 Biotech, 9(6): 223. DOI: https://doi.org/10.1007/s13205-019-1760-2
Upadhyay, S.K., Kumar, J., Alok, A. & Tuli, R. 2013. RNA-guided genome editing for target gene mutations in wheat. G3 Genes|Genomes|Genetics, 3(12): 2233-2238. DOI: https://doi.org/10.1534/g3.113.008847
Usman, B., Nawaz, G., Zhao, N., Liao, S., Liu, Y. & Li, R. 2020. Precise editing of the OsPYL9 gene by RNA-guided Cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza sativa L.) by regulating circadian rhythm and abiotic stress responsive proteins. International Journal of Molecular Sciences, 21(21): 7854. DOI: https://doi.org/10.3390/ijms21217854
Van Andel, T. 2010. African rice (Oryza glaberrima Steud.): lost crop of the enslaved Africans discovered in Suriname. Economic Botany, 64(1): 1-10. DOI: https://doi.org/10.1007/s12231-010-9111-6
Van Roey, P., Waddling, C.A., Fox, K.M., Belfort, M. & Derbyshire, V. 2001. Intertwined structure of the DNA‐binding domain of intron endonuclease I‐TevI with its substrate. The EMBO Journal, 20: 3631-3637. DOI: https://doi.org/10.1093/emboj/20.14.3631
Vaughan, A. 2022. UK to relax law on gene-edited food in post-Brexit change from EU. https://www.newscientist.com/article/2321556-uk-to-relax-law-on-gene-edited-food-in-post-brexit-change-from-eu/. Accessed November 2022.
Viswan, A., Yamagishi, A., Hoshi, M., Furuhata, Y., Kato, Y., Makimoto, N., Takeshita, T., Kobayashi, T., Iwata, F., Kimura, M., Yoshizumi, T. & Nakamura, C. 2022. Microneedle array-assisted, direct delivery of genome-editing proteins into plant tissue. Frontiers in Plant Science, 13: 878059. DOI: https://doi.org/10.3389/fpls.2022.878059
Vlčko, T. & Ohnoutková, L. 2020. Allelic variants of CRISPR/Cas9 induced mutation in an inositol trisphosphate 5/6 kinase gene manifest different phenotypes in Barley. Plants, 9(2): 195. DOI: https://doi.org/10.3390/plants9020195
Wada, N., Osakabe, K. & Osakabe, Y. 2023. Type I-D CRISPR system-mediated genome editing in plants. In: Plant Genome Engineering. Methods in Molecular Biology, vol 2653B. Yang, W. Harwood & Q. Que (Eds.). Humana, New York, pp 21-38. DOI: https://doi.org/10.1007/978-1-0716-3131-7_2
Wah, D.A., Hirsch, J.A., Dorner, L.F., Schildkraut, I. & Aggarwal, A.K. 1997. Structure of the multimodular endonuclease FokI bound to DNA. Nature, 388: 97-100. DOI: https://doi.org/10.1038/40446
Waltz, E. 2016. Gene-edited CRISPR mushroom escapes US regulation. Nature, 532(7599): 293. DOI: https://doi.org/10.1038/nature.2016.19754
Waltz, E. 2018. With a free pass, CRISPR-edited plants reach market in record time. Nature Biotechnology, 36(1): 6-7. DOI: https://doi.org/10.1038/nbt0118-6b
Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G. & Zhao, K. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One. 11(4): e0154027. DOI: https://doi.org/10.1371/journal.pone.0154027
Wang, J., Wu, H., Chen, Y. & Yin, T. 2020. Efficient CRISPR/Cas9-mediated gene editing in an interspecific hybrid poplar with a highly heterozygous genome. Frontiers in Plant Science, 11: 996. DOI: https://doi.org/10.3389/fpls.2020.00996
Wang, T., Zhang, H. & Zhu, H. 2019a. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticultural Research, 6(1): 77. DOI: https://doi.org/10.1038/s41438-019-0159-x
Wang, W.C., Lin, T.C., Kieber, J. & Tsai, Y.C. 2019b. Response regulators 9 and 10 negatively regulate salinity tolerance in rice. Plant Cell Physiology, 60(11): 2549-2563. DOI: https://doi.org/10.1093/pcp/pcz149
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. & Qiu, J.L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9): 947-951. DOI: https://doi.org/10.1038/nbt.2969
Wang, Y., Fuentes, R.R., van Rengs, W.M.J. et al. 2024. Harnessing clonal gametes in hybrid crops to engineer polyploid genomes. Nature Genetics, 56, 1075-1079. DOI: https://doi.org/10.1038/s41588-024-01750-6
Wang, Y., Lecourieux, F., Zhang, R., Dai, Z., Lecourieux, D., Li, S. & Liang, Z. 2021. Data comparison and software design for easy selection and application of CRISPR-based genome editing systems in plants. Genomics, Proteomics & Bioinformatics, 19(6): 937-948. DOI: https://doi.org/10.1016/j.gpb.2019.05.008
Westermann, L., Neubauer, B. & Köttgen, M. 2021. Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflügers Archiv, 473(1): 1-2. DOI: https://doi.org/10.1007/s00424-020-02497-9
Wright, D.A., Townsend, J.A., Winfrey Jr, R.J., Irwin, P.A., Rajagopal, J., Lonosky, P.M., Hall, B.D., Jondle, M.D. & Voytas, D.F. 2005. High‐frequency homologous recombination in plants mediated by zinc‐finger nucleases. The Plant Journal, 44(4): 693-705. DOI: https://doi.org/10.1111/j.1365-313X.2005.02551.x
Xie, K. & Yang, Y. 2013. RNA-guided genome editing in plants using a CRISPR-Cas system. Molecular Plant, 6(6): 1975-1983. DOI: https://doi.org/10.1093/mp/sst119
Xie, K., Zhang, J. & Yang, Y. 2014. Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Molecular Plant, 7(5): 923-926. DOI: https://doi.org/10.1093/mp/ssu009
Xie, X., Ma, X., Zhu, Q., Zeng, D., Li, G. & Liu, Y.-G. 2017. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Molecular Plant, 10(9): 1246-1249. DOI: https://doi.org/10.1016/j.molp.2017.06.004
Young, J., Zastrow-Hayes, G., Deschamps, S., Svitashev, S., Zaremba, M., Acharya, A., Paulraj, S., Peterson-Burch, B., Schwartz, C., Djukanovic, V., Lenderts, B., Feigenbutz, L., Wang, L., Alarcon, C., Siksnys, V., May, G., Chilcoat, N.D. & Kumar, S. 2019. CRISPR-Cas9 editing in maize: systematic evaluation of off-target activity and its relevance in crop improvement. Scientific Reports, 9: 6729. DOI: https://doi.org/10.1038/s41598-019-43141-6
Yue, E., Cao, H. & Liu, B. 2020. OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants, 9(10): 1337. DOI: https://doi.org/10.3390/plants9101337
Zaidi, S.S., Mahas, A., Vanderschuren, H., Mahfouz, M.M. 2020. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biology, 21(1): 289. DOI: https://doi.org/10.1186/s13059-020-02204-y
Zaidi, S.S., Vanderschuren, H., Qaim, M., Mahfouz, M.M., Kohli, A., Mansoor, S., & Tester, M. 2019. New plant breeding technologies for food security. Science, 363(6434): 1390-1391. DOI: https://doi.org/10.1126/science.aav6316
Zainuddin, Z., Mohd-Zim, N.A., Azmi, N.S., Roowi, S.H. & Samsulrizal, N.H. 2021. Genome editing for the development of rice resistance against stresses: a review. Pertanika Journal of Tropical Agricultural Science, 44(3):599-616. DOI: https://doi.org/10.47836/pjtas.44.3.06
Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J., Tang, J., Yu, X., Liu, G. & Luo, L. 2019. Enhanced rice salt tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 39: 47. DOI: https://doi.org/10.1007/s11032-019-0954-y
Zhang, H., Gou, F., Zhang, J., Liu, W., Li, Q., Mao, Y., Botella, J.R. & Zhu, J.K. 2016. TALEN‐mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnology Journal, 14(1): 186-194. DOI: https://doi.org/10.1111/pbi.12372
Zhang, Y., Zhao, G., Ahmed, F.Y., Yi, T., Hu, S., Cai, T. & Liao, Q. 2020. In silico method in CRISPR/Cas system: an expedite and powerful booster. Frontiers in Oncology, 10: 584404. DOI: https://doi.org/10.3389/fonc.2020.584404
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P. & Durand, J.L. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35): 9326-9331. DOI: https://doi.org/10.1073/pnas.1701762114
Zheng, M., Lin, J., Liu, X., Chu, W., Li, J., Gao, Y., An, K., Song, W., Xin, M., Yao, Y. & Peng, H. 2021. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiology, 186(4): 1951-1969. DOI: https://doi.org/10.1093/plphys/kiab187
Zheng, Y., Zhang, N., Martin, G.B. & Fei, Z. 2019. Plant Genome Editing Database (PGED): a call for submission of information about genome-edited plant mutants. Molecular Plant, 12(2): 127-129. DOI: https://doi.org/10.1016/j.molp.2019.01.001
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2019/STG05/UIAM/03/8 -
Institut Penyelidikan dan Kemajuan Pertanian Malaysia
Grant numbers RMK-12 Mega Project: P-502, Sub-project D











