Genome Editing for Enhanced Abiotic Stress Tolerance in Selected Cereal (Poaceae) Crops: Current Applications, Tools, and Future Perspectives
Keywords:
Abiotic stress, climate change, crop improvement, omics, plant biotechnology, staple foodAbstract
Recent progress in genome editing (GEd) technology offers an opportunity to accelerate the breeding of improved crops with enhanced resistance and high tolerance to drought and salinity. In this article, we highlight four programmable site-specific nucleases that are considered prominent GEd technologies: meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) nucleases. We then focus on the application of CRISPR/Cas9 system and access the transformation methods that have been used to deliver the system into major cereal crops including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), sorghum (Sorghum bicolor), and wheat (Triticum aestivum). This review further emphasises the applications of the CRISPR/Cas9 system to impart tolerance to two major abiotic stresses, salinity and drought, in these selected crops. Finally, we summarise bioinformatics tools that are available for cereal genome editing works, including guide RNA (gRNA) design and post-editing analysis tools. This review provides an overview of current progress, identifies research gaps, and offers perspectives for prospective scientists embarking on genome editing in cereals and related crops.
Downloads
Metrics
References
Abdallah, N.A., Elsharawy, H., Abulela, H.A., Thilmony, R., Abdelhadi, A.A. & Elarabi, N.I. 2022. Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crops & Food, 1-17.
Abdallah, N.A., Prakash, C.S. & McHughen, A.G. 2015. Genome editing for crop improvement: challenges and opportunities. GM Crops & Food, 6(4): 183-205.
Abdel-Ghany, S.E., Ullah, F., Ben-Hur, A. & Reddy, A.S. 2020. Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to PEG-induced drought stress. International Journal of Molecular Sciences, 21(3): 772.
Abhinandan, K., Skori, L., Stanic, M., Hickerson, N.M., Jamshed, M. & Samuel, M.A. 2018. Abiotic stress signaling in wheat - an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Frontiers in Plant Science, 9: 734.
Al Abdallat, A.M., Ayad, J.Y., Abu Elenein, J.M., Al Ajlouni, Z. & Harwood, W.A. 2014. Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Molecular Breeding, 33(2): 401-414.
Al-Shayeb, B., Skopintsev, P., Soczek, K.M. et al. 2022. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell, 185(24): 4574-4586.
Alam, M.S., Kong, J., Tao, R., Ahmed, T., Alamin, M., Alotaibi, S.S., Abdelsalam, N.R., Xu, J.-H. 2022. CRISPR/Cas9 mediated kockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants, 11(9): 1184.
Allen, F., Crepaldi, L., Alsinet, C. et al. 2019. Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nature Biotechnology, 37(1): 64-72.
Arshadi, A., Karami, E., Sartip, A., Zare, M. & Rezabakhsh, P. 2018. Genotypes performance in relation to drought tolerance in barley using multi-environment trials. Agronomy Research, 16(1): 5-21.
Ashokkumar, S., Jaganathan, D., Ramanathan, V., Rahman, H., Palaniswamy, R., Kambale, R. & Muthurajan, R. 2020. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PloS One, 15(8): e0237018.
Awan, T.H., Ahmadizadeh, M., Jabran, K., Hashim, S. & Chauhan, B.S. 2017. Domestication and development of rice cultivars. In: Rice Production Worldwide. B. Chauhan, K. Jabran & G. Mahajan (Eds.). Springer Switzerland, Cham, pp. 207-216.
Awika, J.M. 2011. Major cereal grains production and use around the world. In: Advances in Cereal Science: Implications to Food Processing and Health Promotion. J.M. Awika, V. Piironen & S. Bean (Eds.). ACS Symposium Series. American Chemical Society, Washington, DC, pp. 1-13.
Baer, M., Taramino, G., Multani, D., Sakai, H., Jiao, S., Fengler, K. & Hochholdinger, F. 2023. Maize lateral rootless 1 encodes a homolog of the DCAF protein subunit of the CUL4‐based E3 ubiquitin ligase complex. New Phytologist, 237(4): 1204-1214.
Bahariah, B., Masani, M.Y.A., Rasid, O.A. & Parveez, G.K.A. 2021. Multiplex CRISPR/Cas9-mediated genome editing of the FAD2 gene in rice: a model genome editing system for oil palm. Journal of Genetic Engineering and Biotechnology, 19(1): 86.
Banakar, R., Eggenberger, A.L., Lee, K., Wright, D.A., Murugan, K., Zarecor, S., Lawrence-Dill, C.J., Sashital, D.G. & Wang, K. 2019. High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice. Scientific Reports, 9(1): 19902.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A. & Horvath, P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819): 1709-1712.
Bhandawat, A., Sharma, V., Rishi V. & Roy J.K. 2020. Biolistic delivery of programmable nuclease (CRISPR/Cas9) in bread wheat. Methods in Molecular Biology, 2124: 309-329.
Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A. & Bonas, U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959): 1509-1512.
Brandt, K.M., Gunn, H., Moretti, N. & Zemetra, R.S. 2020. A streamlined protocol for wheat (Triticum aestivum) protoplast isolation and transformation with CRISPR-Cas ribonucleoprotein complexes. Frontiers in Plant Science, 11: 769.
Brant, E.J., Baloglu, M.C., Parikh, A. & Altpeter, F. 2021 CRISPR/Cas9 mediated targeted mutagenesis of LIGULELESS‐1 in sorghum provides a rapidly scorable phenotype by altering leaf inclination angle. Biotechnology Journal, 16(11): 2100237.
Brazelton Jr, V.A., Zarecor, S., Wright, D.A., Wang, Y., Liu, J., Chen, K., Yang, B. & Lawrence-Dill, C.J. 2015. A quick guide to CRISPR sgRNA design tools. GM Crops & Food, 6(4): 266-276.
Brinkman, E.K., Chen, T., Amendola, M. & van Steensel, B. 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research, 42(22): e168.
Brinkman, E.K., Kousholt, A.N., Harmsen, T., Leemans, C., Chen, T., Jonkers, J. & van Steensel, B. 2018. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res, 46(10): e58.
Broothaerts, W., Jacchia, S., Angers, A., Petrillo, M., Querci, M., Savini, C., Van den Eede, G. & Emons, H. 2021. New genomic techniques: state-of-the-art review. Publications Office of the European Union, Luxembourg.
Buchholzer, M. & Frommer, W.B. 2023. An increasing number of countries regulate genome editing in crops. New Phytologist, 237: 12-15.
Budhagatapalli, N., Rutten, T., Gurushidze, M., Kumlehn, J. & Hensel, G. 2015. Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-strand breaks in barley. G3: Genes, Genomes, Genetics, 5(9): 1857-1863.
Calderini, D.F. & Slafer, G.A. 1998. Changes in yield and yield stability in wheat during the 20th century. Field Crops Research, 57(3): 335-347.
Chanikornpradit, M. 2024. Thailand's significant move on genome editing technology legislation (Report No. TH2024-0047). United States Department of Agriculture, Foreign Agricultural.
Char, S.N., Lee, H. & Yang, B. 2020a. Use of CRISPR/Cas9 for targeted mutagenesis in sorghum. Current Protocols in Plant Biology, 5(2): e20112.
Char, S.N., Neelakandan, A.K., Nahampun, H., Frame, B., Main, M., Spalding, M.H., Becraft, P.W., Meyers, B.C., Walbot, V., Wang, K. & Yang, B., 2017. An Agrobacterium‐delivered CRISPR/Cas9 system for high‐frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 15(2): 257-268.
Char, S.N., Wei, J., Mu, Q., Li, X., Zhang, Z.J., Yu, J. & Yang, B. 2020b. An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnology Journal, 18(2): 319-321.
Che, P., Anand, A., Wu, E., Sander, J.D., Simon, M.K., Zhu, W., Sigmund, A.L., Zastrow‐Hayes, G., Miller, M., Liu, D. & Lawit, S.J. 2018. Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnology Journal, 16(7): 1388-1395.
Chen, W., Zhang, G., Li, J., Zhang, X., Huang, S., Xiang, S., Hu, X. & Liu, C. 2019. CRISPRlnc: a manually curated database of validated sgRNAs for lncRNAs. Nucleic Acids Research, 47(D1): D63-D68.
Chevalier, B., Sussman, D., Otis, C., Noël, A.J., Turmel, M., Lemieux, C., Stephens, K., Monnat, R.J. & Stoddard, B.L. 2004. Metal-dependent DNA cleavage mechanism of the I-Cre I LAGLIDADG homing endonuclease. Biochemistry, 43: 14015-14026.
Choudhary, M., Singh, A., Gupta, M. & Rakshit, S. 2020. Enabling technologies for utilization of maize as a bioenergy feedstock. Biofuels, Bioproducts and Biorefining, 14(2): 402-416.
Chowdhury, N., Das, D., Sarki, Y.N., Sharma, M., Singha, D.L. & Chikkaputtaiah, C. 2022. Genome editing and CRISPR-Cas technology for enhancing abiotic stress tolerance in cereals. In: Omics Approach to Manage Abiotic Stress in Cereals. A. Roychoudhury, T. Aftab & K. Acharya (Eds.). Springer, Singapore. pp 259-294.
Clottey, V., Wairegi, L.W.I., Bationo, B.A., Mando, A. & Kanton, R. 2014. Sorghum- and millet-legume cropping guide. Africa Soil Health Consortium, Nairobi.
Comas, L.H., Becker, S.R., Cruz, V.M.V., Byrne, P.F. & Dierig, D.A. 2013. Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4: 442.
Conant, D., Hsiau, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso, R., Holden, K. & Enzmann, B.L. 2022. Inference of CRISPR edits from Sanger trace data. The CRISPR Journal, 5(1): 123-130.
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. & Zhang, F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819-823.
Cram, D., Kulkarni, M., Buchwaldt, M., Rajagopalan, N., Bhowmik, P., Rozwadowski, K., Parkin, I.A., Sharpe, A.G. & Kagale, S. 2019. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat. BMC Plant Biology, 19: 474.
Dagdas, Y.S., Chen, J.S., Sternberg, S.H., Doudna, J.A. & Yildiz, A. 2017. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Science Advances, 3: eaao0027.
Derby, N.E., Steele, D.D., Terpstra, J., Knighton, R.E. & Casey, F.X. 2005. Interactions of nitrogen, weather, soil, and irrigation on corn yield. Agronomy Journal, 97: 1342-1351.
Do, P.T., Lee, H., Mookkan, M., Folk, W.R. & Zhang, Z.J. 2016. Rapid and efficient Agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker. Plant Cell Reports, 35: 2065-2076.
Dong, O.X. & Ronald, P.C., 2021. Targeted DNA insertion in plants. Proceedings of the National Academy of Sciences, 118(22): p.e2004834117.
Dong, O.X., Yu, S., Jain, R., Zhang, N., Duong, P.Q., Butler, C., Li, Y., Lipzen, A., Martin, J.A., Barry, K.W. & Schmutz, J. 2020. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications, 11: 1178.
Donoso, T. 2021. Standardizing the CRISPR-Cas9 system in oat to understand beta-glucan regulation. MSc thesis, McGill University. https://escholarship.mcgill.ca/concern/theses/7p88cn79j. Accessed October 2022.
Dutt, M., Mou, Z., Zhang, X., Tanwir, S.E. & Grosser, J.W. 2020. Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures. BMC Biotechnology, 20: 58.
Esim, N. & Atici, Ö. 2016. Relationships between some endogenous signal compounds and the antioxidantsystem in response to chilling stress in maize (Zea mays L.) seedlings. Turkish Journal of Botany, 40: 37-44.
Farhat, S., Jain, N., Singh, N., Sreevathsa, R., Dash, P.K., Rai, R., Yadav, S., Kumar, P., Sarkar, A.K., Jain, A., Singh, N.K. & Rai, V. 2019. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Seminars in Cell Development & Biology, 96: 91-99.
Flick, K.E., Jurica, M.S., Monnat Jr, R.J. & Stoddard, B.L. 1998. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature, 394: 96-101.
Gaj, T., Gersbach, C.A. & Barbas III, C.F. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31: 397-405.
Gasparis, S., Przyborowski, M., Kała, M. & Nadolska-Orczyk, A. 2019. Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cells, 8(8):782.
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K. & Wiltshire, A. 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 2973-2989.
Gürel, F., Öztürk, Z.N., Uçarlı, C. & Rosellini, D. 2016. Barley genes as tools to confer abiotic stress tolerance in crops. Frontiers in Plant Science, 7: 1137.
Habben, J.E., Bao, X., Bate, N.J., DeBruin, J.L., Dolan, D., Hasegawa, D., Helentjaris, T.G., Lafitte, R.H., Lovan, N., Mo, H. & Reimann, K. 2014. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought‐stress conditions. Plant Biotechnology Journal, 12: 685-693.
Hamada, H., Liu, Y., Nagira, Y., Miki, R., Taoka, N. & Imai, R. 2018. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Science Reports, 8: 1-7.
Han, X., Chen, Z., Li, P., Xu, H., Liu, K., Zha, W., Li, S., Chen, J., Yang, G., Huang, J., & You, A. 2022. Development of novel rice germplasm for salt-tolerance at seedling stage using CRISPR-Cas9. Sustainability, 14: 2621.
Harwood, W.A. 2019. An introduction to barley: the crop and the model. In: Barley. Methods in Molecular Biology. W. Harwood (Ed.). Humana Press, New York.
He, C., Liu, H., Chen, D., Xie, W.Z., Wang, M., Li, Y., Gong, X., Yan, W. & Chen, L.L. 2021. CRISPR‐Cereal: a guide RNA design tool integrating regulome and genomic variation for wheat, maize and rice. Plant Biotechnology Journal, 19: 2141-2143.
Heigwer, F., Kerr, G. & Boutros, M. 2014. E-CRISP: fast CRISPR target site identification. Nature Methods, 11: 122-123.
Hille, F., Richter, H., Wong, S.P., Bratovič, M., Ressel, S. & Charpentier, E. 2018. The biology of CRISPR-Cas: backward and forward. Cell, 172: 1239-1259.
Hussain, B., Lucas, S.J. & Budak, H. 2018. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Briefings in Functional Genomics, 17: 319-328.
Hussin, S.H., Liu, X., Li, C., Diaby, M., Jatoi, G.H., Ahmed, R., Imran, M. & Iqbal, M.A. 2022. An updated overview on insights into sugarcane genome editing via CRISPR/Cas9 for sustainable production. Sustainability, 14: 12285.
Hwang, H.H., Yu, M. & Lai, E.M. 2017. Agrobacterium-mediated plant transformation: biology and applications. The Arabidopsis Book, 15: e0186.
Igartua, E., Gracia, M.P. & Lasa, J.M. 1994. Characterization and genetic control of germination-emergence responses of grain sorghum to salinity. Euphytica, 76: 185-193.
Imai, R., Hamada, H., Liu, Y., Linghu, Q., Kumagai, Y., Nagira, Y., Miki, R. & Taoka, N. 2020. In planta particle bombardment (iPB): a new method for plant transformation and genome editing. Plant Biotechnology, 37: 171-176.
Iqbal, Z., Iqbal, M.S., Ahmad, A., Memon, A.G. & Ansari, M.I. 2020. New prospects on the horizon: genome editing to engineer plants for desirable traits. Current Plant Biology, 24: 100171.
Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. & Weeks, D.P. 2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41: e188.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816-821.
Joung, J.K. & Sander, J.D. 2013. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14: 49-55.
Juillerat, A., Pessereau, C., Dubois, G., Guyot, V., Maréchal, A., Valton, J., Daboussi, F., Poirot, L., Duclert, A. & Duchateau, P. 2015. Optimized tuning of TALEN specificity using non-conventional RVDs. Scientific Reports, 5: 8150.
Jung, C. & Till, B. 2021. Mutagenesis and genome editing in crop improvement: perspectives for the global regulatory landscape. Trends in Plant Science, 26(12): 1258-1269.
Jung, J., Won, S.Y., Suh, S.C., Kim, H., Wing, R., Jeong, Y., Hwang, I. & Kim, M. 2007. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta, 225: 575-588.
Kalidasan, V. & Theva Das, K. 2021. Is Malaysia ready for human gene editing: a regulatory, biosafety and biosecurity perspective. Frontiers in Bioengineering and Biotechnology, 9: 649203.
Kapusi, E., Corcuera-Gómez, M., Melnik, S. & Stoger, E. 2017. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Frontiers in Plant Science, 8: 540.
Khalil, A.M. 2020. The genome editing revolution: review. Journal of Genetic Engineering and Biotechnology, 18(1): 68.
Kim, D., Alptekin, B. & Budak, H. 2018. CRISPR/Cas9 genome editing in wheat. Functional & Integrative Genomics, 18(1): 31-41.
Kim, M.-S., Ko, S.-R., Jung, Y.J., Kang, K.-K., Lee, Y.-J., Cho, Y.-G. 2023. Knockout mutants of OsPUB7 generated using CRISPR/Cas9 revealed abiotic stress tolerance in rice. International Journal of Molecular Sciences, 24: 5338.
Křenek, P., Chubar, E., Vadovič, P., Ohnoutková, L., Vlčko, T., Bergougnoux, V., Cápal, P., Ovečka, M. & Šamaj, J. 2021. CRISPR/Cas9-induced loss-of-function mutation in the barley mitogen-activated protein kinase 6 gene causes abnormal embryo development leading to severely reduced grain germination and seedling shootless phenotype. Frontiers in Plant Science, 12: 670302.
Labuhn, M., Adams, F.F., Ng, M., Knoess, S., Schambach, A., Charpentier, E.M., Schwarzer, A., Mateo, J.L., Klusmann, J.H. & Heckl, D. 2018. Refined sgRNA efficacy prediction improves large-and small-scale CRISPR-Cas9 applications. Nucleic Acids Research, 46(3): 1375-1385.
Laforest, L.C. & Nadakuduti, S.S. 2022. Advances in delivery mechanisms of CRISPR gene-editing reagents in plants. Frontiers in Genome Editing, 4: 830178.
Lan, T., Zheng, Y., Su, Z., Yu, S., Song, H., Zheng, X., Lin, G. & Wu, W. 2019. OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.). G3: Genes, Genomes, Genetics, 9(12): 4107-4114.
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10: R25.
Lawrenson, T. & Harwood, W.A. 2019. Creating targeted gene knockouts in barley using CRISPR/Cas9. In: Barley. Methods in Molecular Biology. W. Harwood (Ed.). Humana Press, New York, pp 217-232.
Le Rhun, A., Escalera-Maurer, A., Bratovič, M. & Charpentier, E. 2019. CRISPR-Cas in Streptococcus pyogenes. RNA Biology, 16(4): 380-389.
Leenay, R.T., Aghazadeh, A., Hiatt, J., Tse, D., Roth, T.L., Apathy, R., Shifrut, E., Hultquist, J.F., Krogan, N., Wu, Z. & Cirolia, G. 2019. Large dataset enables prediction of repair after CRISPR-Cas9 editing in primary T cells. Nature Biotechnology, 37: 1034-1037.
Lei, Y., Lu, L., Liu, H.Y., Li, S., Xing, F. & Chen, L.L. 2014. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant, 7: 1494-1496.
Li, A., Jia, S., Yobi, A., Ge, Z., Sato, S.J., Zhang, C., Angelovici, R., Clemente, T.E. & Holding, D.R. 2018. Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiology, 177: 1425-1438.
Li, J., Wang, Z., Chang, Z., He, H., Tang, X., Ma, L. & Deng, X.W. 2021. A functional characterization of TaMs1 orthologs in Poaceae plants. The Crop Journal, 9: 1291-1300.
Li, T., Huang, S., Zhao, X., Wright, D.A., Carpenter, S., Spalding, M.H., Weeks, D.P. & Yang, B. 2011. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 39: 6315-6325.
Liang, Z., Wu, Y., Ma, L., Guo, Y. & Ran, Y. 2021. Efficient genome editing in Setaria italica using CRISPR/Cas9 and base editors. Frontiers in Plant Science, 12: 815946.
Liang, Z., Zhang, K., Chen, K. & Gao, C. 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41: 63-68.
Liao, S., Qin, X., Luo, L., Han, Y., Wang, X., Usman, B., Nawaz, G., Zhao, N., Liu, Y. & Li, R. 2019. CRISPR/Cas9-induced mutagenesis of Semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy, 9: 728.
Linares, O.F. 2002. African rice (Oryza glaberrima): history and future potential. Proceedings of the National Academy of Sciences, 99: 16360-16365.
Liu, G., Li, J. & Godwin, I.D. 2019. Genome editing by CRISPR/Cas9 in sorghum through biolistic bombardment. In: Sorghum. Methods in Molecular Biology, vol 1931. Z.Y. Zhao & J. Dahlberg (Eds.). Humana Press, New York, pp 169-183.
Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K. & Chen, L.L. 2017. CRISPR-P 2.0: an Improved CRISPR-Cas9 tool for genome editing in plants. Molecular Plant, 10: 530-532.
Liu, S., Li, C., Wang, H., Wang, S., Yang, S., Liu, X., Yan, J., Li, B., Beatty, M., Zastrow-Hayes, G. & Song, S. 2020. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biology, 21: 163.
Liu, T.Y. & Doudna, J.A. 2020. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. Journal of Biological Chemistry, 295(42): 14473-14487.
Liu, W., Xie, X., Ma, X., Li, J., Chen, J. & Liu, Y.G. 2015. DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Molecular Plant, 8: 1431-1433.
Lloyd, J.R. & Kossmann, J. 2021. Improving crops for a changing world. Frontiers in Plant Science, 12: 728328.
Ma, X., Chen, L., Zhu, Q., Chen, Y. & Liu, Y.G. 2015. Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products. Molecular Plant, 8: 1285-1287.
MacNeish, R.S. & Eubanks, M.W. 2000. Comparative analysis of the Rio Balsas and Tehuacan models for the origin of maize. Latin American Antiquity, 11: 3-20.
Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I. & Koonin, E.V. 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1: 7.
Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft, D.H., Horvath, P., Moineau, S., Mojica, F.J.M., Terns, R.M., Terns, M.P., White, M.F., Yakunin, A.F., Garrett, R.A., van der Oost, J., Backofen, R. & Koonin, E.V. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 13(11): 722-736.
Malzahn, A., Lowder, L. & Qi, Y. 2017. Plant genome editing with TALEN and CRISPR. Cell & Bioscience, 7(1): 21.
Md Yusof, A.A., Tamizi, A.-A., Mohd-Zim, N.A., Sattar, S.S., Salleh, M.S., Azmi, N.S., Zainal, Z., Zainuddin, Z. & Samsulrizal, N.H. 2023. Development of CRISPR/Cas9 construct in rice (Oryza sativa subsp. indica) using Golden Gate cloning method towards drought tolerance. Journal of Tropical Life Science, 13(2): 257-276.
Michalski, K., Ziąbska, P., Sowa, S., Zimny, J. & Linkiewicz, A.M. 2023. Evaluation of CRISPR/Cas9 constructs in wheat cell suspension cultures. International Journal of Molecular Sciences, 24(3): 2162.
Miller, J.C., Zhang, L., Xia, D.F. et al. 2015. Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nature Methods, 12(5): 465-471.
Miller, K., Eggenberger, A.L., Lee, K., Liu, F., Kang, M., Drent, M., Ruba, A., Kirscht, T., Wang, K. & Jiang, S. 2021. An improved biolistic delivery and analysis method for evaluation of DNA and CRISPR-Cas delivery efficacy in plant tissue. Scientific Reports, 11(1): 7695.
Mojica, F.J., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2): 174-182.
Molla, K.A. & Yang, Y. 2019. Predicting CRISPR/Cas9-induced mutations for precise genome editing. Trends in Biotechnology, 38(2): 136-141.
Molla, K.A., Shih, J., Wheatley, M.S. & Yang, Y. 2022. Predictable NHEJ insertion and assessment of HDR editing strategies in plants. Frontiers in Genome Editing, 4: 825236.
Moon, S.B., Kim, D.Y., Ko, J.H. & Kim, Y.S. 2019. Recent advances in the CRISPR genome editing tool set. Experimental & Molecular Medicine, 51: 1-11.
Mussolino, C. & Cathomen, T. 2012. TALE nucleases: tailored genome engineering made easy. Current Opinion in Biotechnology, 23(5): 644-650.
Naito, Y., Hino, K., Bono, H. & Ui-Tei, K. 2015. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 31(7): 1120-1123.
Neumann, K., Verburg, P.H., Stehfest, E. & Müller, C. 2010. The yield gap of global grain production: a spatial analysis. Agricultural Systems, 103(5): 316-326.
Nidhi, S., Anand, U., Oleksak, P., Tripathi, P., Lal, J.A., Thomas, G., Kuca, K. & Tripathi, V. 2021. Novel CRISPR-Cas systems: an updated review of the current achievements, applications, and future research perspectives. International Journal of Molecular Sciences, 22(7): 3327.
Nishimasu, H., Cong, L., Yan, W.X., Ran, F.A., Zetsche, B., Li, Y., Kurabayashi, A., Ishitani, R., Zhang, F. & Nureki, O. 2015. Crystal structure of Staphylococcus aureus Cas9. Cell, 162(5): 1113-1126.
Nurdiani, D., Widyajayantie, D. & Nugroho, S. 2018. OsSCE1 encoding SUMO E2-conjugating enzyme involves in drought stress response of Oryza sativa. Rice Science, 25(2): 73-81.
OECD/FAO. 2022. Cereals. In: OECD-FAO Agricultural Outlook 2022-2031. Organisation for Economic Co-operation and Development - Food and Agriculture Organization of the United Nations.
Ogata, T., Ishizaki, T., Fujita, M. & Fujita, Y. 2020. CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS One, 15(12): e0243376.
Okada, A., Arndell, T., Borisjuk, N., Sharma, N., Watson‐Haigh, N.S., Tucker, E.J., Baumann, U., Langridge, P. & Whitford, R. 2019. CRISPR/Cas9‐mediated knockout of Ms1 enables the rapid generation of male‐sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 17(10): 1905-1913.
Oliveros, J.C., Franch, M., Tabas-Madrid, D., San-León, D., Montoliu, L., Cubas, P. & Pazos, F. 2016. Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Research, 44(W1): W267-W271.
Osakabe, Y. & Osakabe, K. 2015. Genome editing with engineered nucleases in plants. Plant Cell Physiology, 56(3): 389-400.
Oz, M.T., Altpeter, A., Karan, R., Merotto, A. & Altpeter, F. 2021. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Frontiers in Genome Editing, 3: 673566.
Pellegrini, R. 2016. Edit single bases with Benchling! https://blog.benchling.com/2016/07/18/base-editor. Accessed 18 October 2022.
Radin Firdaus, R.B., Tan, M.L., Rahmat, S.R. & Gunaratne, M.S. 2020. Paddy, rice and food security in Malaysia: a review of climate change impacts. Cogent Social Sciences, 6(1): 1818373.
Ranum, P., Peña‐Rosas, J.P. & Garcia‐Casal, M.N. 2014. Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312: 105-112.
Razalli, I.I., Abdullah-Zawawi, M.R., Tamizi, A.A., Harun, S., Zainal-Abidin, R.A., Jalal, M.I.A., Ullah, M.A. & Zainal, Z., 2025. Accelerating crop improvement via integration of transcriptome-based network biology and genome editing. Planta, 261: 92.
Roychoudhury, A., Paul, S. & Basu, S. 2013. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Reports, 32(7): 985-1006.
Ruja, A., Toma, I., Bulai, A., Agapie, A.L., Negrut, G., Suhai, K. & Gorinoiu, G. 2021. The impact of climate changes on production in the autumn and spring oats. Life Science and Sustainable Development, 2(2): 73-81.
Saha, D., Panda, A.K. & Datta, S. 2025. Critical considerations and computational tools in plant genome editing. Heliyon, 11(1): e41135.
Saisho, D. & Takeda, K. 2011. Barley: emergence as a new research material of crop science. Plant Cell Physiology, 52(5): 724-727.
Saleh, A.S.M, Zhang, Q., Chen, J. & Shen, Q. 2013. Millet grains: nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 12(3): 281-295.
Sandhya, D., Jogam, P., Allini, V.R., Abbagani, S. & Alok, A. 2020. The present and potential future methods for delivering CRISPR/Cas9 components in plants. Journal of Genetic Engineering and Biotechnology, 18(1): 25.
Sant'Ana, R.R.A., Caprestano, C.A., Nodari, R.O. & Agapito-Tenfen, S.Z. 2020. PEG-Delivered CRISPR-Cas9 ribonucleoproteins system for gene-editing screening of maize protoplasts. Genes, 11(9): 1029.
Santosh Kumar, V.V., Verma, R.K., Yadav, S.K., Yadav, P., Watts, A., Rao, M.V. & Chinnusamy, V. 2020. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants, 26(6): 1099-1110.
Shan, Q., Wang, Y., Li, J. & Gao, C. 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9(10): 2395-2410.
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L. & Gao, C. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8): 686-688.
Shelake, R.M., Kadam, U.S., Kumar, R., Pramanik, D., Singh, A.K. & Kim, J.Y. 2022. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: targets, tools, challenges, and perspectives. Plant Communications, 3(6): 100417.
Shen, B.W., Landthaler, M., Shub, D.A. and Stoddard, B.L., 2004. DNA binding and cleavage by the HNH homing endonuclease I-HmuI. Journal of Molecular Biology, 342(1): 43-56.
Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Hakimi, S.M., Mo, H. & Habben, J.E. 2017. ARGOS8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2): 207-216.
Shufen, C., Yicong, C., Baobing, F., Guiai, J., Zhonghua, S., Ju, L.U., Shaoqing, T., Jianlong, W., Peisong, H. & Xiangjin, W. 2019. Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation. Rice Science, 26(2): 77-87.
Siegner, S.M., Karasu, M.E., Schröder, M.S., Kontarakis, Z. & Corn, J.E. 2021. PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics, 22(1): 101.
Silva, G., Poirot, L., Galetto, R., Smith, J., Montoya, G., Duchateau, P. & Pâques, F. 2011. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Current Gene Therapy, 11(1): 11-27.
Sladen, P.E., Perdigão, P.R., Salsbury, G., Novoselova, T., van der Spuy, J., Chapple, J.P., Yu-Wai-Man, P. & Cheetham, M.E. 2021. CRISPR-Cas9 correction of OPA1 c.1334G>A: p.R445H restores mitochondrial homeostasis in dominant optic atrophy patient-derived iPSCs. Molecular Therapy Nucleic Acids, 26: 432-443.
Sledzinski, P., Nowaczyk, M. & Olejniczak, M. 2020. Computational tools and resources supporting CRISPR-Cas experiments. Cells, 9(5): 1288.
Song, B., Yang, S., Hwang, G.-H., Yu, J. & Bae, S. 2021. Analysis of NHEJ-based DNA repair after CRISPR-Mediated DNA cleavage. International Journal of Molecular Sciences, 22(12): 6397.
Soreng, R.J., Peterson, P.M., Romaschenko, K., Davidse, G., Zuloaga, F.O., Judziewicz, E.J., Filgueiras, T.S., Davis, J.I. & Morrone, O. 2015. A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution, 53(2): 117-137.
Spök, A., Sprink, T., Allan, A.C., Yamaguchi, T. & Dayé, C. 2022. Towards social acceptability of genome-edited plants in industrialised countries? Emerging evidence from Europe, United States, Canada, Australia, New Zealand, and Japan. Frontiers in Genome Editing, 4: 899331.
Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J. & Mateo, J.L. 2015. Correction: CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PloS One, 12(4): e0176619.
Stoddard, B.L. 2005. Homing endonuclease structure and function. Quarterly Reviews of Biophysics, 38(1): 49-95.
Sun, J., Liu, H., Liu, J., Cheng, S., Peng, Y., Zhang, Q., Yan, J., Liu, H.J. & Chen, L.L. 2019. CRISPR-Local: a local single-guide RNA (sgRNA) design tool for non-reference plant genomes. Bioinformatics, 35(14): 2501-2503.
Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K. & Mark Cigan, A. 2016. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 7: 13274.
Svitashev, S., Young, J.K., Schwartz, C., Gao, H., Falco, S.C. & Cigan, A.M. 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169(2): 931-945.
Takáč, T., Křenek, P., Komis, G., Vadovič, P., Ovečka, M., Ohnoutková, L., Pechan, T., Kašpárek, P., Tichá, T., Basheer, J., Arick, M.II. & Šamaj, J. 2021. TALEN-based HvMPK3 knock-out attenuates proteome and root hair phenotypic responses to flg22 in barley. Frontiers in Plant Science, 12: 666229.
Tamizi, A.A., Md-Yusof, A.A., Mohd-Zim, N.A., Nazaruddin N.H., Sekeli, R., Zainuddin, Z. & Samsulrizal, N.H. 2023. Agrobacterium-mediated in planta transformation of cut coleoptile: a new, simplified, and tissue culture-independent method to deliver the CRISPR/Cas9 system in rice. Molecular Biology Reports, 50(11): 9353-9366.
Uluisik, S., Chapman, N.H., Smith, R. et al. 2016. Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology, 34(9): 950-952.
United Nations. 2022. World population to reach 8 billion this year, as growth rate slows. https://news.un.org/en/story/2022/07/1122272. Accessed November 2022.
Uniyal, A.P., Mansotra, K., Yadav, S.K. & Kumar, V. 2019. An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants. 3 Biotech, 9(6): 223.
Upadhyay, S.K., Kumar, J., Alok, A. & Tuli, R. 2013. RNA-guided genome editing for target gene mutations in wheat. G3 Genes|Genomes|Genetics, 3(12): 2233-2238.
Usman, B., Nawaz, G., Zhao, N., Liao, S., Liu, Y. & Li, R. 2020. Precise editing of the OsPYL9 gene by RNA-guided Cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza sativa L.) by regulating circadian rhythm and abiotic stress responsive proteins. International Journal of Molecular Sciences, 21(21): 7854.
Van Andel, T. 2010. African rice (Oryza glaberrima Steud.): lost crop of the enslaved Africans discovered in Suriname. Economic Botany, 64(1): 1-10.
Van Roey, P., Waddling, C.A., Fox, K.M., Belfort, M. & Derbyshire, V. 2001. Intertwined structure of the DNA‐binding domain of intron endonuclease I‐TevI with its substrate. The EMBO Journal, 20: 3631-3637.
Vaughan, A. 2022. UK to relax law on gene-edited food in post-Brexit change from EU. https://www.newscientist.com/article/2321556-uk-to-relax-law-on-gene-edited-food-in-post-brexit-change-from-eu/. Accessed November 2022.
Viswan, A., Yamagishi, A., Hoshi, M., Furuhata, Y., Kato, Y., Makimoto, N., Takeshita, T., Kobayashi, T., Iwata, F., Kimura, M., Yoshizumi, T. & Nakamura, C. 2022. Microneedle array-assisted, direct delivery of genome-editing proteins into plant tissue. Frontiers in Plant Science, 13: 878059.
Vlčko, T. & Ohnoutková, L. 2020. Allelic variants of CRISPR/Cas9 induced mutation in an inositol trisphosphate 5/6 kinase gene manifest different phenotypes in Barley. Plants, 9(2): 195.
Wada, N., Osakabe, K. & Osakabe, Y. 2023. Type I-D CRISPR system-mediated genome editing in plants. In: Plant Genome Engineering. Methods in Molecular Biology, vol 2653B. Yang, W. Harwood & Q. Que (Eds.). Humana, New York, pp 21-38.
Wah, D.A., Hirsch, J.A., Dorner, L.F., Schildkraut, I. & Aggarwal, A.K. 1997. Structure of the multimodular endonuclease FokI bound to DNA. Nature, 388: 97-100.
Waltz, E. 2016. Gene-edited CRISPR mushroom escapes US regulation. Nature, 532(7599): 293.
Waltz, E. 2018. With a free pass, CRISPR-edited plants reach market in record time. Nature Biotechnology, 36(1): 6-7.
Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G. & Zhao, K. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One. 11(4): e0154027.
Wang, J., Wu, H., Chen, Y. & Yin, T. 2020. Efficient CRISPR/Cas9-mediated gene editing in an interspecific hybrid poplar with a highly heterozygous genome. Frontiers in Plant Science, 11: 996.
Wang, T., Zhang, H. & Zhu, H. 2019a. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticultural Research, 6(1): 77.
Wang, W.C., Lin, T.C., Kieber, J. & Tsai, Y.C. 2019b. Response regulators 9 and 10 negatively regulate salinity tolerance in rice. Plant Cell Physiology, 60(11): 2549-2563.
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. & Qiu, J.L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9): 947-951.
Wang, Y., Fuentes, R.R., van Rengs, W.M.J. et al. 2024. Harnessing clonal gametes in hybrid crops to engineer polyploid genomes. Nature Genetics, 56, 1075-1079.
Wang, Y., Lecourieux, F., Zhang, R., Dai, Z., Lecourieux, D., Li, S. & Liang, Z. 2021. Data comparison and software design for easy selection and application of CRISPR-based genome editing systems in plants. Genomics, Proteomics & Bioinformatics, 19(6): 937-948.
Westermann, L., Neubauer, B. & Köttgen, M. 2021. Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflügers Archiv, 473(1): 1-2.
Wright, D.A., Townsend, J.A., Winfrey Jr, R.J., Irwin, P.A., Rajagopal, J., Lonosky, P.M., Hall, B.D., Jondle, M.D. & Voytas, D.F. 2005. High‐frequency homologous recombination in plants mediated by zinc‐finger nucleases. The Plant Journal, 44(4): 693-705.
Xie, K. & Yang, Y. 2013. RNA-guided genome editing in plants using a CRISPR-Cas system. Molecular Plant, 6(6): 1975-1983.
Xie, K., Zhang, J. & Yang, Y. 2014. Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Molecular Plant, 7(5): 923-926.
Xie, X., Ma, X., Zhu, Q., Zeng, D., Li, G. & Liu, Y.-G. 2017. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Molecular Plant, 10(9): 1246-1249.
Young, J., Zastrow-Hayes, G., Deschamps, S., Svitashev, S., Zaremba, M., Acharya, A., Paulraj, S., Peterson-Burch, B., Schwartz, C., Djukanovic, V., Lenderts, B., Feigenbutz, L., Wang, L., Alarcon, C., Siksnys, V., May, G., Chilcoat, N.D. & Kumar, S. 2019. CRISPR-Cas9 editing in maize: systematic evaluation of off-target activity and its relevance in crop improvement. Scientific Reports, 9: 6729.
Yue, E., Cao, H. & Liu, B. 2020. OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants, 9(10): 1337.
Zaidi, S.S., Mahas, A., Vanderschuren, H., Mahfouz, M.M. 2020. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biology, 21(1): 289.
Zaidi, S.S., Vanderschuren, H., Qaim, M., Mahfouz, M.M., Kohli, A., Mansoor, S., & Tester, M. 2019. New plant breeding technologies for food security. Science, 363(6434): 1390-1391.
Zainuddin, Z., Mohd-Zim, N.A., Azmi, N.S., Roowi, S.H. & Samsulrizal, N.H. 2021. Genome editing for the development of rice resistance against stresses: a review. Pertanika Journal of Tropical Agricultural Science, 44(3):599-616.
Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J., Tang, J., Yu, X., Liu, G. & Luo, L. 2019. Enhanced rice salt tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 39: 47.
Zhang, H., Gou, F., Zhang, J., Liu, W., Li, Q., Mao, Y., Botella, J.R. & Zhu, J.K. 2016. TALEN‐mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnology Journal, 14(1): 186-194.
Zhang, Y., Zhao, G., Ahmed, F.Y., Yi, T., Hu, S., Cai, T. & Liao, Q. 2020. In silico method in CRISPR/Cas system: an expedite and powerful booster. Frontiers in Oncology, 10: 584404.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P. & Durand, J.L. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35): 9326-9331.
Zheng, M., Lin, J., Liu, X., Chu, W., Li, J., Gao, Y., An, K., Song, W., Xin, M., Yao, Y. & Peng, H. 2021. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiology, 186(4): 1951-1969.
Zheng, Y., Zhang, N., Martin, G.B. & Fei, Z. 2019. Plant Genome Editing Database (PGED): a call for submission of information about genome-edited plant mutants. Molecular Plant, 12(2): 127-129.
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2019/STG05/UIAM/03/8 -
Institut Penyelidikan dan Kemajuan Pertanian Malaysia
Grant numbers RMK-12 Mega Project: P-502, Sub-project D











