Comparative Analysis of Lactobacillus spp. Fermentation in Five Fruit Drinks: Impacts on Lactic Acid Production and Cell Viability
Keywords:
fermentation, fruit drink, probiotic, growth profile, cell viability, lactic acidAbstract
Fruit drinks, which contain at least 5% fruit juice and are typically non-fermented, provide a promising base for developing non-dairy functional beverages. Fermenting these drinks with lactic acid bacteria (LAB), recognized as safe for consumption, could enhance their health benefits and functionality. This study aimed to assess the lactic acid production and cell viability of different Lactobacillus spp. during the fermentation of fruit drinks. Five Lactobacillus spp., namely Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, L. acidophilus, Lacticaseibacillus rhamnosus, and LimosiLactobacillus reuteri were utilized to ferment five different fruit drinks. Results show that L. plantarum exhibited superior cell growth and viability, with lactic acid production comparable to the other Lactobacillus spp.. Moreover, different Lactobacillus strains were found to produce varying concentrations of lactic acid across different fruit juices. This study demonstrates the viability of probiotics in fruit drinks, paving the way for the development of functional beverages with potential benefits for gut health and overall well-being.
Downloads
Metrics
References
Abedi, E. & Hashemi, S.M.B. 2020. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon, 6(10): e04974. DOI: https://doi.org/10.1016/j.heliyon.2020.e04974
Aljutaily, T., Huarte, E., Martinez-Monteagudo, S., Gonzalez-Hernandez, J.L., Rovai, M. & Sergeev, I.N. 2020. Probiotic-enriched milk and dairy products increase gut microbiota diversity: A comparative study. Nutrition Research, 82: 25–33. DOI: https://doi.org/10.1016/j.nutres.2020.06.017
Bangar, S.P., Suri, S., Trif, M. & Ozogul, F. 2022. Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience, 46: 101615. DOI: https://doi.org/10.1016/j.fbio.2022.101615
Borshchevskaya, L.N., Gordeeva, T.L., Kalinina, A.N. & Sineokii, S.P. 2016. Spectrophotometric determination of lactic acid. Journal of Analytical Chemistry, 71(8): 755–758. DOI: https://doi.org/10.1134/S1061934816080037
Breidt, F. & Skinner, C. 2022. Buffer models for pH and acid changes occurring in cucumber juice fermented with Lactiplantibacillus pentosus and Leuconostoc mesenteroides. Journal of Food Protection, 85(9): 1273-1281. DOI: https://doi.org/10.4315/JFP-22-068
Cele, N.P., Akinola, S.A., Manhivi, V.E., Shoko, T., Remize, F. & Sivakumar, D. 2022. Influence of lactic acid bacterium strains on changes in quality, functional compounds and volatile compounds of mango juice from different cultivars during fermentation. Foods, 11(5): 682. DOI: https://doi.org/10.3390/foods11050682
Chen, Y., Jianqiao, J., Li, Y., Xie, Y., Cui, M., Hu, Y., Yin, R., Ma, X., Niu, J., Cheng, W. & Gao, F. 2024. Enhancing physicochemical properties, organic acids, antioxidant capacity, amino acids and volatile compounds for ‘Summer Black’ grape juice by lactic acid bacteria fermentation. LWT, 209: 116791. DOI: https://doi.org/10.1016/j.lwt.2024.116791
D’Amico, A., Buzzanca, C., Pistorio, E., Melilli, M.G. & Di Stefano, V. 2024. Fruit juices as alternative to dairy products for probiotics’ intake. Beverages, 10(4): 100. DOI: https://doi.org/10.3390/beverages10040100
Degrain, A., Manhivi, V., Remize, F., Garcia, C. & Sivakumar, D. 2020. Effect of lactic acid fermentation on color, phenolic compounds and antioxidant activity in african nightshade. Microorganisms, 8(9): 1–12. DOI: https://doi.org/10.3390/microorganisms8091324
Di Biase, M., Le Marc, Y., Bavaro, A.R., De Bellis, P., Lonigro, S.L., Lavermicocca, P., Postollec, F. & Valerio, F. 2022. A predictive growth model for pro-technological and probiotic Lacticaseibacillus paracasei strains fermenting white cabbage. Frontiers in Microbiology, 13: 907393 DOI: https://doi.org/10.3389/fmicb.2022.907393
Dudek, K., Álvarez Guzmán, C.L. & Valdez-Vazquez, I. 2024. Microbial activity of lactic acid bacteria and hydrogen producers mediated by pH and total solids during the consolidated bioprocessing of agave bagase. World Journal of Microbiology and Biotechnology, 40: 70. DOI: https://doi.org/10.1007/s11274-024-03888-1
Fidanza, M., Panigrahi, P. & Kollmann, T.R. 2021. Lactiplantibacillus plantarum–nomad and ideal probiotic. Frontiers in Microbiology, 12: 712236. DOI: https://doi.org/10.3389/fmicb.2021.712236
Filannino, P., Cardinali, G., Rizzello, C.G., Buchin, S., De Angelis, M., Gobbetti, M. & Di Cagno, R. 2014. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices. Applied and Environmental Microbiology, 80(7): 2206–2215. DOI: https://doi.org/10.1128/AEM.03885-13
Gao, H., Li, X., Chen, X., Hai, D., Wei, C., Zhang, L. & Li, P. 2022. The functional roles of Lactobacillus acidophilus in different physiological and pathological processes. Journal of Microbiology and Biotechnology, 32(10): 1226–1233. DOI: https://doi.org/10.4014/jmb.2205.05041
Garcia, C., Guerin, M., Souidi, K. & Remize, F. 2020. Lactic fermented fruit or vegetable juices: Past, present and future. Beverages, 6(1): 1–31. DOI: https://doi.org/10.3390/beverages6010008
Goderska, K., Czarnecka, M. & Czarnecki, Z. 2007. Effect of prebiotic additives to carrot juice on the survivability of Lactobacillus and Bifidobacterium bacteria. Polish Journal of Food and Nutrition Sciences, 57(4): 427–432.
Guo, Y., Tian, X., Huang, R., Tao, X., P. Shah, Nagendra., Wei, H. & Wan, C. 2017. A physiological comparative study of acid tolerance of Lactobacillus plantarum ZDY 2013 and L. plantarum ATCC 8014 at membrane and cytoplasm levels. Annals of Microbiology, 67: 669–677. DOI: https://doi.org/10.1007/s13213-017-1295-x
Hinestroza-Córdoba, L.I., Betoret, E., Seguí, L., Barrera, C. & Betoret, N. 2021. Fermentation of lulo juice with Lactobacillus reuteri cect 925. Properties and effect of high homogenization pressures on resistance to in vitro gastrointestinal digestion. Applied Sciences, 11(22): 10909. DOI: https://doi.org/10.3390/app112210909
Jabłońska-Ryś, W., Sławińska, A., Skrzypczak, K. & Goral, K. 2022. Dynamics of changes in pH and the contents of free sugars, organic acids and LAB in button mushrooms during controlled lactic fermentation. Foods, 11(11): 1553. DOI: https://doi.org/10.3390/foods11111553
Jin, Q. & Kirk, M.F. 2018. PH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Frontiers in Environmental Science, 6: 21. DOI: https://doi.org/10.3389/fenvs.2018.00021
Kamiloglu, S., Sari, G., Ozdal, T. & Capanoglu, E. 2020. Guidelines for cell viability assays. Food Frontiers, 1(3): 332–349. DOI: https://doi.org/10.1002/fft2.44
Liu, X., Jia, B., Sun, X., Ai, J., Wang, L., Zhao, F., Zhan, J. & Huang, W. 2015. Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. Journal of Food Science, 80(4): M800–M808. DOI: https://doi.org/10.1111/1750-3841.12813
Maia, M.S., Domingos, M.M. & de São José, J.F.B. 2023. Viability of probiotic microorganisms and the effect of their addition to fruit and vegetable juices. Microorganisms, 11(5): 1–34. DOI: https://doi.org/10.3390/microorganisms11051335
Mauro, C.S.I., Guergoletto, K.B. & Garcia, S. 2016. Development of blueberry and carrot juice blend fermented by Lactobacillus reuteri LR92. Beverages, 2(4): 37. DOI: https://doi.org/10.3390/beverages2040037
Meenu, M., Kaur, S., Kaur, M., Mradula, M., Khandare, K., Xu, B. & Pati, P.K. 2024. The golden era of fruit juices-based probiotic beverages: Recent advancements and future possibilities. Process Biochemistry, 142: 113-135. DOI: https://doi.org/10.1016/j.procbio.2024.04.001
Naseem, Z., Mir, S.A., Wani, S.M., Rouf, M.A., Bashir, I. & Zehra, A. 2023. Probiotic-fortified fruit juices: Health benefits, challenges, and future perspective. Nutrition, 115: 112154. DOI: https://doi.org/10.1016/j.nut.2023.112154
Nguyen, B.T., Bujna, E., Fekete, N., Tran, A.T.M., Rezessy-Szabo, J.M., Prasad, R. & Nguyen, Q.D. 2019. Probiotic beverage from pineapple juice fermented with Lactobacillus and Bifidobacterium strains. Frontiers in Nutrition, 6: 1–7. DOI: https://doi.org/10.3389/fnut.2019.00054
Perricone, M., Bevilacqua, A., Altieri, C., Sinigaglia, M. & Corbo, M.R. 2015. Challenges for the production of probiotic fruit juices. Beverages, 1(2): 95-103. DOI: https://doi.org/10.3390/beverages1020095
Petrariu, O.A., Barbu, I.C., Niculescu, A.G., Constantin, M., Grigore, G.A., Cristian, R.E., Mihaescu, G. & Vrancianu, C.O. 2024. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Frontiers in Microbiology, 14: 1296447. DOI: https://doi.org/10.3389/fmicb.2023.1296447
Peyer, L., Bellut, K., Lynch, K. & Zarnkow, M. 2017. Impact of buffering capacity on the acidification of wort by brewing-relevant lactic acid bacteria. Journal of Institute of Brewing, 123(4): 497-505. DOI: https://doi.org/10.1002/jib.447
Polak-Berecka, M., Waśko, A., Kordowska-Wiater, M., Targoński, Z. & Kubik-Komar, A. 2011. Application of response surface methodology to enhancement of biomass production by Lactobacillus rhamnosus E/N. Brazilian Journal of Microbiology, 42(4): 1485–1494. DOI: https://doi.org/10.1590/S1517-83822011000400035
Popova-Krumova, P., Danova, S., Atanasova, N. & Yankov, D. 2024. Lactic acid production by Lactiplantibacillus plantarum AC 11S - Kinetics and modeling. Microorganisms, 12(4): 739. DOI: https://doi.org/10.3390/microorganisms12040739
Prado, F.C., Parada, J.L., Pandey, A. & Soccol, C.R. 2008. Trends in non-dairy probiotic beverages. Food Research International, 41(2): 111–123. DOI: https://doi.org/10.1016/j.foodres.2007.10.010
Putnik, P., Pavlić, B., Šojić, B., Zavadlav, S., Žuntar, I., Kao, L., Kitonić, D. & Kovačević, D.B. 2020. Innovative hurdle technologies for the preservation of functional fruit juices. Foods, 9(6): 1–36. DOI: https://doi.org/10.3390/foods9060699
Razmi, N., Lazouskaya, M., Pajcin, I., Petrovic, B., Grahovac, J., Simic, M., Willander, M., Nur, O. & Stojanovic, G.M. 2023. Monitoring the effect of pH on the growth of pathogenic bacteria using electrical impedance spectroscopy. Results in Engineering, 20: 101425. DOI: https://doi.org/10.1016/j.rineng.2023.101425
Rengadu, D., Gerrano, A.S. & Mellem, J.J. 2021. Microencapsulation of Lactobacillus casei and Bifidobacterium animalis enriched with resistant starch from Vigna Unguiculata. Starch/Staerke, 73(7–8): 1–9. DOI: https://doi.org/10.1002/star.202000247
Rezac, S., Kok, C.R., Heermann, M. & Hutkins, R. 2018. Fermented foods as a dietary source of live organisms. Frontiers in Microbiology, 9: 1785 DOI: https://doi.org/10.3389/fmicb.2018.01785
Sarkar, D. & Paul, G. 2017. A study on optimization of lactic acid production from whey by Lactobacillus sp isolated form curd sample. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 5(2): 822.
Śliżewska, K. & Chlebicz-Wójcik, A. 2020. Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology (Basel), 9(12): 1–13. DOI: https://doi.org/10.3390/biology9120423
Soliman, A.H.S., Sharoba, A.M., Bahlol, H.E.M., Soliman, A.S. & Radi, O.M.M. 2015. Evaluation of Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum for probiotic characteristics. Middle East Journal of Applied Sciences, 05(01): 10–18.
Sourri, P., Tassou, C.C., Nychas, G.E. & Panagou, E.Z. 2022. Fruit juice spoilage by Alicyclobacillus: detection and control methods-A comprehensive review. Foods, 11(5): 747. DOI: https://doi.org/10.3390/foods11050747
Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L.A. & Kopsahelis, N. 2019. Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7): 591. DOI: https://doi.org/10.3390/nu11071591
Üçok, G. & Sert, D. 2020. Growth kinetics and biomass characteristics of Lactobacillus plantarum L14 isolated from sourdough: Effect of fermentation time on dough machinability. LWT, 129: 109516. DOI: https://doi.org/10.1016/j.lwt.2020.109516
Valero-Cases, E., Roy, N.C., Frutos, M. J. & Anderson, R.C. 2017. Influence of the fruit juice carriers on the ability of Lactobacillus plantarum DSM20205 to improve in vitro intestinal barrier integrity and its probiotic properties. Journal of Agricultural and Food Chemistry, 65(28): 5632–5638. DOI: https://doi.org/10.1021/acs.jafc.7b01551
Vera-Peña, M.Y. & Rodriguez, W.L.R. 2020. Effect of pH on the growth of three lactic acid bacteria strains isolated from sour cream. Universitas Scientiarum, 25(2): 341–358. DOI: https://doi.org/10.11144/Javeriana.SC25-2.eopo
Wang, H., He, X., Li, J., Wu, J., Jiang, S, Xue, H., Zhang, J., Jha, R. & Wang, R. 2024. Lactic acid bacteria fermentation improves physicochemical properties, bioacivity, and metabolic profiles of Opuntia ficus-indica fruit juice. Food Chemistry, 453: 139646. DOI: https://doi.org/10.1016/j.foodchem.2024.139646
Yáñez, R., Marques, S., Gírio, F.M. & Roseiro, J.C. 2008. The effect of acid stress on lactate production and growth kinetics in Lactobacillus rhamnosus cultures. Process Biochemistry, 43(4): 356–361. DOI: https://doi.org/10.1016/j.procbio.2007.12.014
Žuntar, I., Petric, Z., Kovačević, D.B. & Putnik, P. 2020. Safety of probiotics : Functional fruit beverages and nutraceuticals. Journal of Foods, 9(7): 947. DOI: https://doi.org/10.3390/foods9070947
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission