Comparative Analysis of Lactobacillus spp. Fermentation in Five Fruit Drinks: Impacts on Lactic Acid Production and Cell Viability

https://doi.org/10.55230/mabjournal.v54i2.3305

Authors

  • Nurhazwani Sa'aid School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
  • Joo Shun Tan School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
  • Mohd Shamzi Mohamed Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
  • Lakshmanan Muthulakshmi Biomaterials and Product Development Laboratory, Department of Biotechnology, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil-626126, India

Keywords:

fermentation, fruit drink, probiotic, growth profile, cell viability, lactic acid

Abstract

Fruit drinks, which contain at least 5% fruit juice and are typically non-fermented, provide a promising base for developing non-dairy functional beverages. Fermenting these drinks with lactic acid bacteria (LAB), recognized as safe for consumption, could enhance their health benefits and functionality. This study aimed to assess the lactic acid production and cell viability of different Lactobacillus spp. during the fermentation of fruit drinks. Five Lactobacillus spp., namely Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, L. acidophilus, Lacticaseibacillus rhamnosus, and LimosiLactobacillus reuteri were utilized to ferment five different fruit drinks. Results show that L. plantarum exhibited superior cell growth and viability, with lactic acid production comparable to the other Lactobacillus spp.. Moreover, different Lactobacillus strains were found to produce varying concentrations of lactic acid across different fruit juices. This study demonstrates the viability of probiotics in fruit drinks, paving the way for the development of functional beverages with potential benefits for gut health and overall well-being.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abedi, E. & Hashemi, S.M.B. 2020. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon, 6(10): e04974. DOI: https://doi.org/10.1016/j.heliyon.2020.e04974

Aljutaily, T., Huarte, E., Martinez-Monteagudo, S., Gonzalez-Hernandez, J.L., Rovai, M. & Sergeev, I.N. 2020. Probiotic-enriched milk and dairy products increase gut microbiota diversity: A comparative study. Nutrition Research, 82: 25–33. DOI: https://doi.org/10.1016/j.nutres.2020.06.017

Bangar, S.P., Suri, S., Trif, M. & Ozogul, F. 2022. Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience, 46: 101615. DOI: https://doi.org/10.1016/j.fbio.2022.101615

Borshchevskaya, L.N., Gordeeva, T.L., Kalinina, A.N. & Sineokii, S.P. 2016. Spectrophotometric determination of lactic acid. Journal of Analytical Chemistry, 71(8): 755–758. DOI: https://doi.org/10.1134/S1061934816080037

Breidt, F. & Skinner, C. 2022. Buffer models for pH and acid changes occurring in cucumber juice fermented with Lactiplantibacillus pentosus and Leuconostoc mesenteroides. Journal of Food Protection, 85(9): 1273-1281. DOI: https://doi.org/10.4315/JFP-22-068

Cele, N.P., Akinola, S.A., Manhivi, V.E., Shoko, T., Remize, F. & Sivakumar, D. 2022. Influence of lactic acid bacterium strains on changes in quality, functional compounds and volatile compounds of mango juice from different cultivars during fermentation. Foods, 11(5): 682. DOI: https://doi.org/10.3390/foods11050682

Chen, Y., Jianqiao, J., Li, Y., Xie, Y., Cui, M., Hu, Y., Yin, R., Ma, X., Niu, J., Cheng, W. & Gao, F. 2024. Enhancing physicochemical properties, organic acids, antioxidant capacity, amino acids and volatile compounds for ‘Summer Black’ grape juice by lactic acid bacteria fermentation. LWT, 209: 116791. DOI: https://doi.org/10.1016/j.lwt.2024.116791

D’Amico, A., Buzzanca, C., Pistorio, E., Melilli, M.G. & Di Stefano, V. 2024. Fruit juices as alternative to dairy products for probiotics’ intake. Beverages, 10(4): 100. DOI: https://doi.org/10.3390/beverages10040100

Degrain, A., Manhivi, V., Remize, F., Garcia, C. & Sivakumar, D. 2020. Effect of lactic acid fermentation on color, phenolic compounds and antioxidant activity in african nightshade. Microorganisms, 8(9): 1–12. DOI: https://doi.org/10.3390/microorganisms8091324

Di Biase, M., Le Marc, Y., Bavaro, A.R., De Bellis, P., Lonigro, S.L., Lavermicocca, P., Postollec, F. & Valerio, F. 2022. A predictive growth model for pro-technological and probiotic Lacticaseibacillus paracasei strains fermenting white cabbage. Frontiers in Microbiology, 13: 907393 DOI: https://doi.org/10.3389/fmicb.2022.907393

Dudek, K., Álvarez Guzmán, C.L. & Valdez-Vazquez, I. 2024. Microbial activity of lactic acid bacteria and hydrogen producers mediated by pH and total solids during the consolidated bioprocessing of agave bagase. World Journal of Microbiology and Biotechnology, 40: 70. DOI: https://doi.org/10.1007/s11274-024-03888-1

Fidanza, M., Panigrahi, P. & Kollmann, T.R. 2021. Lactiplantibacillus plantarum–nomad and ideal probiotic. Frontiers in Microbiology, 12: 712236. DOI: https://doi.org/10.3389/fmicb.2021.712236

Filannino, P., Cardinali, G., Rizzello, C.G., Buchin, S., De Angelis, M., Gobbetti, M. & Di Cagno, R. 2014. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices. Applied and Environmental Microbiology, 80(7): 2206–2215. DOI: https://doi.org/10.1128/AEM.03885-13

Gao, H., Li, X., Chen, X., Hai, D., Wei, C., Zhang, L. & Li, P. 2022. The functional roles of Lactobacillus acidophilus in different physiological and pathological processes. Journal of Microbiology and Biotechnology, 32(10): 1226–1233. DOI: https://doi.org/10.4014/jmb.2205.05041

Garcia, C., Guerin, M., Souidi, K. & Remize, F. 2020. Lactic fermented fruit or vegetable juices: Past, present and future. Beverages, 6(1): 1–31. DOI: https://doi.org/10.3390/beverages6010008

Goderska, K., Czarnecka, M. & Czarnecki, Z. 2007. Effect of prebiotic additives to carrot juice on the survivability of Lactobacillus and Bifidobacterium bacteria. Polish Journal of Food and Nutrition Sciences, 57(4): 427–432.

Guo, Y., Tian, X., Huang, R., Tao, X., P. Shah, Nagendra., Wei, H. & Wan, C. 2017. A physiological comparative study of acid tolerance of Lactobacillus plantarum ZDY 2013 and L. plantarum ATCC 8014 at membrane and cytoplasm levels. Annals of Microbiology, 67: 669–677. DOI: https://doi.org/10.1007/s13213-017-1295-x

Hinestroza-Córdoba, L.I., Betoret, E., Seguí, L., Barrera, C. & Betoret, N. 2021. Fermentation of lulo juice with Lactobacillus reuteri cect 925. Properties and effect of high homogenization pressures on resistance to in vitro gastrointestinal digestion. Applied Sciences, 11(22): 10909. DOI: https://doi.org/10.3390/app112210909

Jabłońska-Ryś, W., Sławińska, A., Skrzypczak, K. & Goral, K. 2022. Dynamics of changes in pH and the contents of free sugars, organic acids and LAB in button mushrooms during controlled lactic fermentation. Foods, 11(11): 1553. DOI: https://doi.org/10.3390/foods11111553

Jin, Q. & Kirk, M.F. 2018. PH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Frontiers in Environmental Science, 6: 21. DOI: https://doi.org/10.3389/fenvs.2018.00021

Kamiloglu, S., Sari, G., Ozdal, T. & Capanoglu, E. 2020. Guidelines for cell viability assays. Food Frontiers, 1(3): 332–349. DOI: https://doi.org/10.1002/fft2.44

Liu, X., Jia, B., Sun, X., Ai, J., Wang, L., Zhao, F., Zhan, J. & Huang, W. 2015. Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. Journal of Food Science, 80(4): M800–M808. DOI: https://doi.org/10.1111/1750-3841.12813

Maia, M.S., Domingos, M.M. & de São José, J.F.B. 2023. Viability of probiotic microorganisms and the effect of their addition to fruit and vegetable juices. Microorganisms, 11(5): 1–34. DOI: https://doi.org/10.3390/microorganisms11051335

Mauro, C.S.I., Guergoletto, K.B. & Garcia, S. 2016. Development of blueberry and carrot juice blend fermented by Lactobacillus reuteri LR92. Beverages, 2(4): 37. DOI: https://doi.org/10.3390/beverages2040037

Meenu, M., Kaur, S., Kaur, M., Mradula, M., Khandare, K., Xu, B. & Pati, P.K. 2024. The golden era of fruit juices-based probiotic beverages: Recent advancements and future possibilities. Process Biochemistry, 142: 113-135. DOI: https://doi.org/10.1016/j.procbio.2024.04.001

Naseem, Z., Mir, S.A., Wani, S.M., Rouf, M.A., Bashir, I. & Zehra, A. 2023. Probiotic-fortified fruit juices: Health benefits, challenges, and future perspective. Nutrition, 115: 112154. DOI: https://doi.org/10.1016/j.nut.2023.112154

Nguyen, B.T., Bujna, E., Fekete, N., Tran, A.T.M., Rezessy-Szabo, J.M., Prasad, R. & Nguyen, Q.D. 2019. Probiotic beverage from pineapple juice fermented with Lactobacillus and Bifidobacterium strains. Frontiers in Nutrition, 6: 1–7. DOI: https://doi.org/10.3389/fnut.2019.00054

Perricone, M., Bevilacqua, A., Altieri, C., Sinigaglia, M. & Corbo, M.R. 2015. Challenges for the production of probiotic fruit juices. Beverages, 1(2): 95-103. DOI: https://doi.org/10.3390/beverages1020095

Petrariu, O.A., Barbu, I.C., Niculescu, A.G., Constantin, M., Grigore, G.A., Cristian, R.E., Mihaescu, G. & Vrancianu, C.O. 2024. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Frontiers in Microbiology, 14: 1296447. DOI: https://doi.org/10.3389/fmicb.2023.1296447

Peyer, L., Bellut, K., Lynch, K. & Zarnkow, M. 2017. Impact of buffering capacity on the acidification of wort by brewing-relevant lactic acid bacteria. Journal of Institute of Brewing, 123(4): 497-505. DOI: https://doi.org/10.1002/jib.447

Polak-Berecka, M., Waśko, A., Kordowska-Wiater, M., Targoński, Z. & Kubik-Komar, A. 2011. Application of response surface methodology to enhancement of biomass production by Lactobacillus rhamnosus E/N. Brazilian Journal of Microbiology, 42(4): 1485–1494. DOI: https://doi.org/10.1590/S1517-83822011000400035

Popova-Krumova, P., Danova, S., Atanasova, N. & Yankov, D. 2024. Lactic acid production by Lactiplantibacillus plantarum AC 11S - Kinetics and modeling. Microorganisms, 12(4): 739. DOI: https://doi.org/10.3390/microorganisms12040739

Prado, F.C., Parada, J.L., Pandey, A. & Soccol, C.R. 2008. Trends in non-dairy probiotic beverages. Food Research International, 41(2): 111–123. DOI: https://doi.org/10.1016/j.foodres.2007.10.010

Putnik, P., Pavlić, B., Šojić, B., Zavadlav, S., Žuntar, I., Kao, L., Kitonić, D. & Kovačević, D.B. 2020. Innovative hurdle technologies for the preservation of functional fruit juices. Foods, 9(6): 1–36. DOI: https://doi.org/10.3390/foods9060699

Razmi, N., Lazouskaya, M., Pajcin, I., Petrovic, B., Grahovac, J., Simic, M., Willander, M., Nur, O. & Stojanovic, G.M. 2023. Monitoring the effect of pH on the growth of pathogenic bacteria using electrical impedance spectroscopy. Results in Engineering, 20: 101425. DOI: https://doi.org/10.1016/j.rineng.2023.101425

Rengadu, D., Gerrano, A.S. & Mellem, J.J. 2021. Microencapsulation of Lactobacillus casei and Bifidobacterium animalis enriched with resistant starch from Vigna Unguiculata. Starch/Staerke, 73(7–8): 1–9. DOI: https://doi.org/10.1002/star.202000247

Rezac, S., Kok, C.R., Heermann, M. & Hutkins, R. 2018. Fermented foods as a dietary source of live organisms. Frontiers in Microbiology, 9: 1785 DOI: https://doi.org/10.3389/fmicb.2018.01785

Sarkar, D. & Paul, G. 2017. A study on optimization of lactic acid production from whey by Lactobacillus sp isolated form curd sample. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 5(2): 822.

Śliżewska, K. & Chlebicz-Wójcik, A. 2020. Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology (Basel), 9(12): 1–13. DOI: https://doi.org/10.3390/biology9120423

Soliman, A.H.S., Sharoba, A.M., Bahlol, H.E.M., Soliman, A.S. & Radi, O.M.M. 2015. Evaluation of Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum for probiotic characteristics. Middle East Journal of Applied Sciences, 05(01): 10–18.

Sourri, P., Tassou, C.C., Nychas, G.E. & Panagou, E.Z. 2022. Fruit juice spoilage by Alicyclobacillus: detection and control methods-A comprehensive review. Foods, 11(5): 747. DOI: https://doi.org/10.3390/foods11050747

Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L.A. & Kopsahelis, N. 2019. Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7): 591. DOI: https://doi.org/10.3390/nu11071591

Üçok, G. & Sert, D. 2020. Growth kinetics and biomass characteristics of Lactobacillus plantarum L14 isolated from sourdough: Effect of fermentation time on dough machinability. LWT, 129: 109516. DOI: https://doi.org/10.1016/j.lwt.2020.109516

Valero-Cases, E., Roy, N.C., Frutos, M. J. & Anderson, R.C. 2017. Influence of the fruit juice carriers on the ability of Lactobacillus plantarum DSM20205 to improve in vitro intestinal barrier integrity and its probiotic properties. Journal of Agricultural and Food Chemistry, 65(28): 5632–5638. DOI: https://doi.org/10.1021/acs.jafc.7b01551

Vera-Peña, M.Y. & Rodriguez, W.L.R. 2020. Effect of pH on the growth of three lactic acid bacteria strains isolated from sour cream. Universitas Scientiarum, 25(2): 341–358. DOI: https://doi.org/10.11144/Javeriana.SC25-2.eopo

Wang, H., He, X., Li, J., Wu, J., Jiang, S, Xue, H., Zhang, J., Jha, R. & Wang, R. 2024. Lactic acid bacteria fermentation improves physicochemical properties, bioacivity, and metabolic profiles of Opuntia ficus-indica fruit juice. Food Chemistry, 453: 139646. DOI: https://doi.org/10.1016/j.foodchem.2024.139646

Yáñez, R., Marques, S., Gírio, F.M. & Roseiro, J.C. 2008. The effect of acid stress on lactate production and growth kinetics in Lactobacillus rhamnosus cultures. Process Biochemistry, 43(4): 356–361. DOI: https://doi.org/10.1016/j.procbio.2007.12.014

Žuntar, I., Petric, Z., Kovačević, D.B. & Putnik, P. 2020. Safety of probiotics : Functional fruit beverages and nutraceuticals. Journal of Foods, 9(7): 947. DOI: https://doi.org/10.3390/foods9070947

Published

30-06-2025

How to Cite

Sa’aid, N., Tan, J. S., Mohamed, M. S. ., & Muthulakshmi, L. (2025). Comparative Analysis of Lactobacillus spp. Fermentation in Five Fruit Drinks: Impacts on Lactic Acid Production and Cell Viability. Malaysian Applied Biology, 54(2), 55–64. https://doi.org/10.55230/mabjournal.v54i2.3305

Issue

Section

Research Articles