Evaluation of Species-Specific PCR Primers for Detecting Pork DNA in Food Seasoning Products

https://doi.org/10.55230/mabjournal.v54i4.3491

Authors

  • Nur Atiqah Khairul Adha Department of Molecular Biology, Faculty of Science and Resource Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
  • Lesley Maurice Bilung Department of Molecular Biology, Faculty of Science and Resource Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
  • Aida Azrina Azmi Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
  • Awang Ahmad Sallehin Awang Husaini Department of Molecular Biology, Faculty of Science and Resource Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
  • Zaliha Suadi Department of Chemistry, Malaysia, Sarawak State, 93050 Kuching, Sarawak, Malaysia

Keywords:

Cytochrome B gene, Food adulteration, Food seasoning, Pork DNA, species-specific PCR

Abstract

Food adulteration remains a critical issue, particularly in highly processed foods where DNA degradation reduces the effectiveness of species identification. This study evaluated the performance of three different lengths of species-specific primers (398, 288 & 149 bp) targeting the mitochondrial cytochrome B gene in pork and aimed to determine the most effective primer for detecting pork DNA in food seasoning products using species-specific Polymerase Chain Reaction (PCR). Furthermore, species-specific primers for bovine and chicken were applied as controls to confirm species identification. The DNA was extracted from raw meat, binary mixtures, and seasonings. Sensitivity was tested with low pork concentrations, and the applicability of pork-specific primers was further evaluated in seasoning products without halal certification to assess potential pork adulteration. The results show that the DNA extracted from raw meat samples exhibited high purity (OD260/280:1.82 –2.00) and concentration (114.83 to 257.16 ng/µL), whereas food seasoning products yielded extremely lower values of purity (OD260/280:0.97 – 1.81) and concentration (2.75 to 66.18 ng/µL). Despite DNA degradation in processed foods, PCR products remain detectable. The shortest 149 bp primer demonstrated the highest sensitivity among the primers, successfully detecting pork DNA at a minimum concentration of 1% (w/w) in a binary meat mixture. The results demonstrated the absence of pork DNA in all non-pork labelled samples. However, the detection of chicken DNA in fermented pork cube samples indicated potential mislabelling or cross-contamination during processing. These findings emphasise the importance of primer selection for detecting highly degraded DNA. This also underscores the applicability of species-specific PCR as a practical and robust approach for routine food authentication, providing a valuable tool to ensure halal compliance within the food industry.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Al-Shaibany, A., Gargouri, H. & Kacem, H.H. 2022. Evaluation of DNA extraction protocols and real-time PCR-based methods for efficient investigation of pig traces in foods. International Food Research Journal, 29(4): 828–842. DOI: https://doi.org/10.47836/ifrj.29.4.10

Amaral, J.S., Santos, C.G., Melo, V.S., Oliveira, M.B.P.P. & Mafra, I. 2014. Authentication of a traditional game meat sausage (Alheira) by species-specific PCR assays to detect hare, rabbit, red deer, pork and cow meats. Food Research International, 60: 140–145. DOI: https://doi.org/10.1016/j.foodres.2013.11.003

Amiteye, S. 2021. Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon, 7(10): 08093. DOI: https://doi.org/10.1016/j.heliyon.2021.e08093

Andrejevic, M., Markovic, M.K., Bursac, B., Mihajlovic, M., Tanasic, V., Kecmanovic, M. & Keckarevic, D. 2019. Identification of a broad spectrum of mammalian and avian species using the short fragment of the mitochondrially encoded cytochrome b gene. Forensic Science, Medicine, and Pathology, 15(2): 169–177. DOI: https://doi.org/10.1007/s12024-019-00096-4

Bandara, B.E.S., De Silva, D.A.M., Maduwanthi, B.C.H. & Warunasinghe, W.A.A.I. 2016. Impact of food labeling information on consumer purchasing decision: with special reference to faculty of agricultural sciences. Procedia Food Science, 6: 309–313. DOI: https://doi.org/10.1016/j.profoo.2016.02.061

Basanisi, M.G., La Bella, G., Nobili, G., Coppola, R., Damato, A.M., Cafiero, M.A. & La Salandra, G. 2020. Application of the novel Droplet digital PCR technology for identification of meat species. International Journal of Food Science and Technology, 55(3): 1145–1150. DOI: https://doi.org/10.1111/ijfs.14486

Cahyadi, M., Fauziah, N.A.D., Suwarto, I.T. & Boonsupthip, W. 2021. Detection of species substitution in raw, cooked, and processed meats utilizing multiplex-PCR assay. Indonesian Journal of Biotechnology, 26(3): 128–132. DOI: https://doi.org/10.22146/ijbiotech.63472

Članjak–Kudra, E., Fazlović, N., Alagić, D., Smajlović, M., Čaklovica, K. & Smajlović, A. 2021. An overview of most commonly used methods for detection of fish mislabeling. Veterinaria, 70(2): 169–184.

Deb-Choudhury, S., Haines, S., Harland, D., Clerens, S., van Koten, C., Lee, E., Thomas, A. & Dyer, J. 2020. Multi-parameter evaluation of the effect of processing conditions on meat protein modification. Heliyon, 6(6): 1–15. DOI: https://doi.org/10.1016/j.heliyon.2020.e04185

Dewi, K.R., Ismayati, M., Solihat, N.N., Yuliana, N.D., Kusnandar, F., Riantana, H., Heryani, H., Halim, A., Acter, T., Uddin, N. & Kim, S. 2023. Advances and key considerations of liquid chromatography–mass spectrometry for porcine authentication in halal analysis. Journal of Analytical Science and Technology, 14(1): 1–18. DOI: https://doi.org/10.1186/s40543-023-00376-3

Dooley, J.J., Paine, K.E., Garrett, S.D. & Brown, H.M. 2004. Detection of meat species using TaqMan real-time PCR assays. Meat Science, 68(3): 431–438. DOI: https://doi.org/10.1016/j.meatsci.2004.04.010

Doosti, A., Ghasemi Dehkordi, P. & Rahimi, E. 2014. Molecular assay to fraud identification of meat products. Journal of Food Science and Technology, 51(1): 148–152. DOI: https://doi.org/10.1007/s13197-011-0456-3

Farag, M.R., El Bohi, K.M., Khalil, S.R., Alagawany, M., Arain, M.A., Sharun, K., Tiwari, R. & Dhama, K. 2020. Forensic applications of mitochondrial cytochrome b gene in the identification of domestic and wild animal species. Journal of Experimental Biology and Agricultural Sciences, 8(1): 1–8. DOI: https://doi.org/10.18006/2020.8(1).1.8

Fuseini, A., Wotton, S.B., Knowles, T.G. & Hadley, P.J. 2017. Halal meat fraud and safety issues in the UK: a review. Food Ethics, 1(2): 127–142. DOI: https://doi.org/10.1007/s41055-017-0009-1

Gargouri, H., Moalla, N. & Kacem, H.H. 2021. PCR–RFLP and species-specific PCR efficiency for the identification of adulteries in meat and meat products. European Food Research and Technology, 247(9): 2183–2192. DOI: https://doi.org/10.1007/s00217-021-03778-y

Ha, J., Kim, S., Lee, J., Lee, S., Lee, H., Choi, Y., Oh, H. & Yoon, Y. 2017. Identification of pork adulteration in processed meat products using the developed mitochondrial DNA-based primers. Korean Journal for Food Science of Animal Resources, 37(3): 464–468. DOI: https://doi.org/10.5851/kosfa.2017.37.3.464

Hossain, M.A.M., Ali, M.E., Abd Hamid, S.B., Asing, Mustafa, S., Mohd Desa, M.N. & Zaidul, I.S.M. 2016. Double gene targeting multiplex polymerase chain reaction-restriction fragment length polymorphism assay discriminates beef, buffalo, and pork substitution in frankfurter products. Journal of Agricultural and Food Chemistry, 64(32): 6343–6354. DOI: https://doi.org/10.1021/acs.jafc.6b02224

Igual, M. & Martínez-Monzó, J. 2022. Physicochemical properties and structure changes of food products during processing. Foods, 11(15): 2365. DOI: https://doi.org/10.3390/foods11152365

Jessica Elizabeth, D.L.T., Gassara, F., Kouassi, A.P., Brar, S.K. & Belkacemi, K. 2015. Spice use in food: properties and benefits. Critical Reviews in Food Science and Nutrition, 57(6): 1078–1088. DOI: https://doi.org/10.1080/10408398.2013.858235

Kim, Y., Lee, H.S. & Lee, K.G. 2023. Detection of porcine DNA in Korean processed foods by real-time PCR. Food Science and Biotechnology, 32(1): 21–26. DOI: https://doi.org/10.1007/s10068-022-01169-x

Kusnadi, J., Natsir, R.F. & Al Awwaly, K.U. 2024. Application of direct PCR technique using specified mitochondrial DNA encoded ND4 and D-Loop genes on detecting pork DNA in processed meat products. Food Research, 8(3): 235–241. DOI: https://doi.org/10.26656/fr.2017.8(3).362

Matsunaga, T., Chikuni, K., Tanabe, R., Muroya, S., Shibata, K., Yamada, J. & Shinmura, Y. 1999. A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Science, 51: 143–148. DOI: https://doi.org/10.1016/S0309-1740(98)00112-0

Momtaz, M., Bubli, S.Y. & Khan, M.S. 2023. Mechanisms and health aspects of food adulteration: a comprehensive review. Foods, 12(1): 199. DOI: https://doi.org/10.3390/foods12010199

Moreira, M.J., García-Díez, J., de Almeida, J.M.M.M. & Saraiva, C. 2021. Consumer knowledge about food labeling and fraud. Foods, 10(5): 1095. DOI: https://doi.org/10.3390/foods10051095

Mote, R.D., Laxmikant, V.S., Singh, S.B., Tiwari, M., Singh, H., Srivastava, J., Tripathi, V., Seshadri, V., Majumdar, A. & Subramanyam, D. 2021. A cost-effective and efficient approach for generating and assembling reagents for conducting real-time PCR. Journal of Biosciences, 46(4): 231. DOI: https://doi.org/10.1007/s12038-021-00231-w

Muflihah, Hardianto, A., Kusumaningtyas, P., Prabowo, S. & Hartati, Y.W. 2023. DNA-based detection of pork content in food. Heliyon, 9(3): 1–16. DOI: https://doi.org/10.1016/j.heliyon.2023.e14418

Nurani, L.H., Kusbandari, A., Guntarti, A., Ahda, M., Warsi, Mubarok, F.N.A. & Rohman, A. 2022. Determination of pork adulteration in roasted beef meatballs using fourier transform infrared spectroscopy in combination with chemometrics. Sains Malaysiana, 51(8): 2573–2582. DOI: https://doi.org/10.17576/jsm-2022-5108-17

Oanh, N.T.K., Thuy Huong Ho Chi, N., Thi Thu Huyen, N. & Thi Tuyet Mai Ho Chi, D. 2017. Preliminary establishment of a multiplex PCR method for the identification of pork and beef meat based on cytochrome-b gene. Ho Chi Minh City Open University Journal of Science, 7(1): 59-65.

Orbayinah, S., Widada, H., Hermawan, A., Sudjadi, S. & Rohman, A. 2019. Application of real-time polymerase chain reaction using species-specific primer targeting on mitochondrial cytochrome-b gene for analysis of pork in meatball products. Journal of Advanced Veterinary and Animal Research, 6(2): 260–265. DOI: https://doi.org/10.5455/javar.2019.f342

Piskata, Z., Servusova, E., Babak, V., Nesvadbova, M. & Borilova, G. 2019. The quality of DNA isolated from processed food and feed via different extraction procedures. Molecules, 24(6): 1188. DOI: https://doi.org/10.3390/molecules24061188

Rashid, N.R.A., Ali, M.E., Hamid, S.B.A., Rahman, M.M., Razzak, M.A., Asing & Amin, M.Al. 2015. A suitable method for the detection of a potential fraud of bringing macaque monkey meat into the food chain. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 32(7): 1013–1022. DOI: https://doi.org/10.1080/19440049.2015.1039073

Sajali, N., Bong, A., Sze, S., Fariha, D., Koris, N.A., Liong, K., Wei, S., Fattah, A., Razak, A., Chuong, W.S., Abu Bakar, S., Jamaluddin, @, Nasir, M. & Desa, M. 2022. Detection of porcine DNA in commercially processed meat products sold in Sarawak. Halalsphere, 2(2): 77-91. DOI: https://doi.org/10.31436/hs.v2i2.50

Sajali, N., Wong, S.C., Hanapi, U.K., Abu Bakar @ Jamaluddin, S., Tasrip, N.A. & Mohd Desa, M.N. 2018. The challenges of DNA extraction in different assorted food matrices: a review. Journal of Food Science, 83(10): 2409–2414. DOI: https://doi.org/10.1111/1750-3841.14338

Şakalar, E., Abasiyanik, M.F., Bektik, E. & Tayyrov, A. 2012. Effect of heat processing on DNA quantification of meat species. Journal of Food Science, 77(9): 2127-2133. DOI: https://doi.org/10.1111/j.1750-3841.2012.02853.x

Śmiechowska, M., Newerli‐guz, J. & Skotnicka, M. 2021. Spices and seasoning mixes in European Union—innovations and ensuring safety. Foods, 10(10): 2289. DOI: https://doi.org/10.3390/foods10102289

Soares, S., Amaral, J.S., Oliveira, M.B.P.P. & Mafra, I. 2013. A SYBR Green real-time PCR assay to detect and quantify pork meat in processed poultry meat products. Meat Science, 94(1): 115–120. DOI: https://doi.org/10.1016/j.meatsci.2012.12.012

Sophian, A., Purwaningsih, R., Muindar, M., Igirisa, E.P.J. & Amirullah, M.L. 2021. Short communication: analysis of purity and concentration of DNA extracted from intron patho gene-spin extraction on crab processed food product samples. Asian Journal of Tropical Biotechnology, 18(1): 1-6. DOI: https://doi.org/10.13057/biotek/c180103

Sreenivasan Tantuan, S. & Viljoen, C.D. 2021. Determining the presence of undeclared animal species using Real-time PCR in canned and ready-to-eat meat products in South Africa. Journal of Food Science and Technology, 58(7): 2699–2704. DOI: https://doi.org/10.1007/s13197-020-04776-w

Suadi, Z., Bilung, L.M., Apun, K. & Azmi, A.A. 2020. Efficiency of traditional DNA extraction method in PCR detection of porcine DNA in meat mixtures. Jurnal Teknologi, 82(5): 85–90. DOI: https://doi.org/10.11113/jt.v82.14636

Tonkin, E., Meyer, S.B., Coveney, J., Webb, T. & Wilson, A.M. 2016. The process of making trust related judgements through interaction with food labelling. Food Policy, 63: 1–11. DOI: https://doi.org/10.1016/j.foodpol.2016.06.007

Turner, P.J., Wong, M., Varese, N., Rolland, J.M., O'Hehir, R.E. & Campbell, D.E. 2013. Tolerance to wheat in whole-grain cereal biscuit in wheat-allergic children. Journal of Allergy and Clinical Immunology, 131(3): 920–923. DOI: https://doi.org/10.1016/j.jaci.2012.11.016

Uddin, S.M.K., Hossain, M.A.M., Chowdhury, Z.Z. & Johan, M.R.Bin. 2021. Short targeting multiplex PCR assay to detect and discriminate beef, buffalo, chicken, duck, goat, sheep and pork DNA in food products. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 38(8): 1273–1288. DOI: https://doi.org/10.1080/19440049.2021.1925748

Wang, L., Hang, X. & Geng, R. 2019. Molecular detection of adulteration in commercial buffalo meat products by multiplex PCR assay. Food Science and Technology, 39(2): 344–348. DOI: https://doi.org/10.1590/fst.28717

Wu, H., Qian, C., Wang, R., Wu, C., Wang, Z., Wang, L., Zhang, M., Ye, Z., Zhang, F., He, J.song & Wu, J. 2020. Identification of pork in raw meat or cooked meatballs within 20 min using rapid PCR coupled with visual detection. Food Control, 109: 1–7. DOI: https://doi.org/10.1016/j.foodcont.2019.106905

Yang, C., Zhong, G., Zhou, S., Guo, Y., Pan, D., Wang, S., Liu, Q., Xia, Q. & Cai, Z. 2022. Detection and characterization of meat adulteration in various types of meat products by using a high-efficiency multiplex polymerase chain reaction technique. Frontiers in Nutrition, 9: 999297. DOI: https://doi.org/10.3389/fnut.2022.979977

Yin, R., Sun, Y., Wang, K., Feng, N., Zhang, H. & Xiao, M. 2020. Development of a PCR based lateral flow strip assay for the simple, rapid, and accurate detection of pork in meat and meat products. Food Chemistry, 318: 1–5. DOI: https://doi.org/10.1016/j.foodchem.2020.126541

Published

26-12-2025

How to Cite

Khairul Adha, N. A., Bilung , L. M. ., Azmi, A. A. ., Awang Husaini, A. A. S. ., & Suadi, Z. . (2025). Evaluation of Species-Specific PCR Primers for Detecting Pork DNA in Food Seasoning Products. Malaysian Applied Biology, 54(4), 130–138. https://doi.org/10.55230/mabjournal.v54i4.3491

Issue

Section

Research Articles