Functional and Structural Analysis of BPSS0140-BPSS0142 ABC Transporter That Mediates Fructose Import in Burkholderia pseudomallei

https://doi.org/10.55230/mabjournal.v51i5.2335

Authors

  • Shu Sian How Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia
  • Su Datt Lam Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia
  • Sheila Nathan Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia
  • Sylvia Chieng Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia

Keywords:

ABC transporter, Burkholderia pseudomallei, protein-ligand docking, protein structure modelling

Abstract

ATP-binding cassette (ABC) transporters mediate bacteria uptake or export of a variety of solutes across biological membranes. Bacterial uptake of the monosaccharides is important as a source of carbohydrate building blocks that contribute to the bacteria’s major structure. Burkholderia pseudomallei is the etiological agent of melioidosis and within its genome, 33 genes related to monosaccharide ABC transporters have been predicted. The presence of these transporters is believed to assist in bacterial survival and adaptation in various environments. Despite a large number of genes in the genome, most of these systems have yet to be characterized, including the bpss0140-bpss0142 operon. Here, we predicted the 3D structure of each protein encoded by bpss0140-0142 and identified the specifically associated monosaccharides. In silico analyses of the structures demonstrated that BPSS0140 is a sugar-binding protein, BPSS0141 is a transmembrane permease and BPSS0142 is an ATPase. Through protein structure modeling and protein-ligand docking, several specific monosaccharide sugars were found to interact with the BPSS0140-BPSS0142 ABC transporter. To validate the in silico prediction, knock-out mutants for each of the genes were constructed. A growth profile between wild-type and mutants in an M9 medium supplemented with glucose, fructose, ribose, and galactose as predicted from the protein-ligand docking was then performed. The growth of mutants decreased significantly compared to the wild-type bacteria when grown in M9 supplemented with fructose as the sole carbon source indicating that this transporter is potentially the main fructose transporter in B. pseudomallei.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Chieng, S., Carreto, L. & Nathan, S. 2012. Burkholderia pseudomallei transcriptional adaptation in macrophages. BMC Genomics, 13(1): 328. DOI: https://doi.org/10.1186/1471-2164-13-328

Colovos, C. & Yeates, T.O. 1993. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9): 1511-1519. DOI: https://doi.org/10.1002/pro.5560020916

Cuneo, M.J., Tian, Y., Allert, M. & Hellinga, H.W. 2008. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog. BMC Structural Biology, 8(1): 20. DOI: https://doi.org/10.1186/1472-6807-8-20

Duangurai, T., Indrawattana, N. & Pumirat, P. 2018. Burkholderia pseudomallei adaptation for survival in stressful conditions. BioMed Research International, 2018(1): 1-11. DOI: https://doi.org/10.1155/2018/3039106

Ford, R.C. & Beis, K. 2019. Learning the ABCs one at a time: structure and mechanism of ABC transporters. Biochemical Society Transactions, 47(1): 23-36. DOI: https://doi.org/10.1042/BST20180147

Gaillard, T. 2018. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark. Journal of Chemical Information and Modeling, 58(8): 1697-1706. DOI: https://doi.org/10.1021/acs.jcim.8b00312

Hall, C.M., Jaramillo, S., Jimenez, R., Stone, N.E., Centner, H., Busch, J.D., Bratsch, N., Roe, C.C., Gee, J.E., Hoffmaster, A.R., Rivera-Garcia, S., Soltero, F., Ryff, K., Perez-Padilla, J., Keim, P., Sahl, J.W. & Wagner, D.M. 2019. Burkholderia pseudomallei, the causative agent of melioidosis, is rare but ecologically established and widely dispersed in the environment in Puerto Rico. PLoS Neglected Tropical Diseases, 13(9): e0007727. DOI: https://doi.org/10.1371/journal.pntd.0007727

Harland, D.N., Dassa, E., Titball, R.W., Brown, K.A. & Atkins, H.S. 2007. ATP-binding cassette systems in Burkholderia pseudomallei and Burkholderia mallei. BMC Genomics, 8(1): 83. DOI: https://doi.org/10.1186/1471-2164-8-83

Holden, M.T.G., Titball, R.W., Peacock, S.J., Cerdeno-Tarraga, A.M., Atkins, T., Crossman, L.C., Pitt, T., Churcher, C., Mungall, K., Bentley, S.D., Sebaihia, M., Thomson, N.R., Bason, N., Beacham, I.R., Brooks, K., Brown, K.A., Brown, N.F., Challis, G.L., Cherevach, I., Chillingworth, T., Cronin, A., Crossett, B., Davis, P., DeShazer, D., Feltwell, T., Fraser, A., Hancea, Z., Hauser, H., Holroyd, S., Jagels, K., Keith, E.K., Maddison, M., Moule, S., Price, C., Quail, M. A., Rabbinowitsch, E., Rutherford, K., Sanders, M., Simmonds, M., Songsivilai, S., Stevens, K., Tumapa, S., Vesaratchavest, M., Whitehead, S., Yeats, C., Barrell, B.G., Oyston, P.C.F. & Parkhill, J. 2004. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proceedings of the National Academy of Sciences, 101(39): 14240-14245. DOI: https://doi.org/10.1073/pnas.0403302101

Inglis, T.J.J. & Sagripanti, J.L. 2006. Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Applied and Environmental Microbiology, 72(11): 6865-6875. DOI: https://doi.org/10.1128/AEM.01036-06

Jeckelmann, J.M. & Erni, B. 2020. Transporters of glucose and other carbohydrates in bacteria. Pflügers Archiv - European Journal of Physiology, 472(9): 1129-1153. DOI: https://doi.org/10.1007/s00424-020-02379-0

Jones, P.M. & George, A.M. 2012. Role of the D-loops in allosteric control of ATP hydrolysis in an ABC transporter. Journal of Physical Chemistry A, 116(11): 3004-3013. DOI: https://doi.org/10.1021/jp211139s

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873): 583-589. DOI: https://doi.org/10.1038/s41586-021-03819-2

Kaneko, A., Uenishi, K., Maruyama, Y., Mizuno, N., Baba, S., Kumasaka, T., Mikami, B., Murata, K. & Hashimoto, W. 2017. A solute-binding protein in the closed conformation induces ATP hydrolysis in a bacterial ATP-binding cassette transporter involved in the import of alginate. Journal of Biological Chemistry, 292(38): 15681-15690. DOI: https://doi.org/10.1074/jbc.M117.793992

Kerr, I.D. 2002. Structure and association of ATP-binding cassette transporter nucleotide-binding domains. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1561(1): 47-64. DOI: https://doi.org/10.1016/S0304-4157(01)00008-9

Khare, D., Oldham, M.L., Orelle, C., Davidson, A.L. & Chen, J. 2009. Alternating access in maltose transporter mediated by rigid-body rotations. Molecular Cell, 33(4): 528-536. DOI: https://doi.org/10.1016/j.molcel.2009.01.035

Kolich, L.R., Chang, Y.T., Coudray, N., Giacometti, S.I., MacRae, M.R., Isom, G.L., Teran, E.M., Bhabha, G. & Ekiert, D.C. 2020. Structure of MlaFB uncovers novel mechanisms of ABC transporter regulation. of Biochemistry, 89(1): 605-636. DOI: https://doi.org/10.1101/2020.04.27.064196

Trott, O. & Olson, A.J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2): 455-461. DOI: https://doi.org/10.1002/jcc.21334

Tsai, H.H.G., Tsai, C.J., Ma, B. & Nussinov, R. 2009. In silico protein design by combinatorial assembly of protein building blocks. Protein Science, 13(10): 2753-2765. DOI: https://doi.org/10.1110/ps.04774004

Vanaporn, M., Sarkar-Tyson, M., Kovacs-Simon, A., Ireland, P.M., Pumirat, P., Korbsrisate, S., Titball, R.W. & Butt, A. 2017. Trehalase plays a role in macrophage colonization and virulence of Burkholderia pseudomallei in insect and mammalian hosts. Virulence, 8(1): 30-40. DOI: https://doi.org/10.1080/21505594.2016.1199316

Verdon, G., Albers, S. V., Dijkstra, B.W., Driessen, A.J.M. & Thunnissen, A.M.W.H. 2003. Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: nucleotide-free and nucleotide-bound conformations. Journal of Molecular Biology, 330(2): 343-358. DOI: https://doi.org/10.1016/S0022-2836(03)00575-8

Wagner, M., Shen, L., Albersmeier, A., Kolk, N., Kim, S., Cha, J., Bräsen, C., Kalinowski, J., Siebers, B. & Albers, S.V. 2018. Sulfolobus acidocaldarius transports pentoses via a carbohydrate uptake transporter 2 (CUT2)-type ABC transporter and metabolizes them through the aldolase-independent Weimberg pathway. Applied and Environmental Microbiology, 84(3): 1-19. DOI: https://doi.org/10.1128/AEM.01273-17

Wei, X., Guo, Y., Shao, C., Sun, Z., Zhurina, D., Liu, D., Liu, W., Zou, D., Jiang, Z., Wang, X., Zhao, J., Shang, W., Li, X., Liao, X., Huang, L., Riedel, C.U. & Yuan, J. 2012. Fructose uptake in Bifidobacterium longum NCC2705 is mediated by an ATP-binding cassette transporter. Journal of Biological Chemistry, 287(1): 357-367. DOI: https://doi.org/10.1074/jbc.M111.266213

Wong, R.R., Kong, C., Lee, S.H. & Nathan, S. 2016. Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt-29 biosensor. Scientific Reports, 6(1): 27475. DOI: https://doi.org/10.1038/srep27475

Woodson, K. & Devine, K.M. 1994. Analysis of a ribose transport operon from Bacillus subtilis. Microbiology, 140(8): 1829-1838. DOI: https://doi.org/10.1099/13500872-140-8-1829

Wu, Q., Peng, Z., Zhang, Y. & Yang, J. 2018. COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic Acids Research, 46(W1): W438-W442. DOI: https://doi.org/10.1093/nar/gky439

Xavier, K.B. & Bassler, B.L. 2005. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. Journal of Bacteriology, 187(1): 238-248. DOI: https://doi.org/10.1128/JB.187.1.238-248.2005

Yang, J., Roy, A. & Zhang, Y. 2013. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20): 2588-2595. DOI: https://doi.org/10.1093/bioinformatics/btt447

Yu, N.Y., Wagner, J.R., Laird, M.R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S.C., Ester, M., Foster, L.J. & Brinkman, F.S.L. 2010. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 26(13): 1608-1615. DOI: https://doi.org/10.1093/bioinformatics/btq249

Zhou, C., Zheng, Y. & Zhou, Y. 2004. Structure prediction of membrane proteins. Genomics, Proteomics & Bioinformatics, 2(1): 1-5. DOI: https://doi.org/10.1016/S1672-0229(04)02001-7

Zulkefli, N.J., Teh, C.S.J., Mariappan, V., Ngoi, S.T., Vadivelu, J., Ponnampalavanar, S., Chai, L.C., Chong, C.W., Yap, I.K.S. & Vellasamy, K.M. 2021. Genomic comparison and phenotypic profiling of small colony variants of Burkholderia pseudomallei. PLoS ONE, 16(12): e0261382. DOI: https://doi.org/10.1371/journal.pone.0261382

Published

26-12-2022

How to Cite

How, S. S., Lam, S. D., Nathan, S., & Chieng, S. (2022). Functional and Structural Analysis of BPSS0140-BPSS0142 ABC Transporter That Mediates Fructose Import in Burkholderia pseudomallei. Malaysian Applied Biology, 51(5), 23–35. https://doi.org/10.55230/mabjournal.v51i5.2335