GAMMA IRRADIATION INDUCED CLASTOGENIC ABNORMALITIES IN Vigna radiata

https://doi.org/10.55230/mabjournal.v51i4.09

Authors

  • LYENA WATTY ZURAINE AHMAD Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • NUR ALYA NABILAH AZIS Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • NORFATIMAH MOHAMED YUNUS Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • AZHAR MOHAMAD Agrotechnology and Bioscience Division, Malaysian Nuclear Agency, 43000 Bangi, Selangor, Malaysia

Keywords:

clastogenic, gamma-ray, mutagenesis, Vigna radiata

Abstract

Gamma irradiation is an effective and widely used method in the agricultural sector to alter the traits of plants especially for commercialization purposes and as a mitigation measure to ensure food security in the future. Vigna radiata (mung bean) is one of the most important legume crops in Asian countries that is not fully exploited. Therefore, this research aimed to determine the effects of gamma irradiation on the cytology and growth of mung beans. The mung bean seeds were exposed to different doses of gamma radiation; 0, 200, 400, 600, 800, and 1000 Gy. The increasing dose of gamma irradiation caused an insignificant decrease (p>0.05) in the mitotic index of V. radiata meristematic cells. However, a significant increase at p<0.05 in the percentage of clastogenic chromosomal aberration was observed in the meristematic cells of plants irradiated at 800 and 1000 Gy. The survival percentage, plant height, and root length were inversely proportional to the percentage of chromosomal aberration and clastogenic abnormalities when the irradiation dose exceeded the LD50 (752.50 Gy). In conclusion, gamma rays greatly induced clastogenic abnormalities which have varying impacts on the cytology and growth of V. radiata plants.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Akpapunam, M. 1996. Mung bean (Vigna radiata (L.) Wilczek). In: Food and Feed from Legumes and Oilseeds. E. Nwokolo & J. Smartt (Eds.). Chapman & Hall, London. pp. 209-215. DOI: https://doi.org/10.1007/978-1-4613-0433-3_23

Amjad, M. & Anjum, M.A. 2003. Effect of post-irradiation storage on the radiation-induced damage in onion seeds. Asian Journal of Plant Sciences, 2(9): 702-707. DOI: https://doi.org/10.3923/ajps.2003.702.707

Asare, A.T., Mensah, F., Acheampong, S., Asare-Bediako, E. & Armah, J. 2017. Effects of gamma irradiation on agromorphological characteristics of okra (Abelmoschus esculentus L. Moench.). Advances in Agriculture, 2017: 1–7. DOI: https://doi.org/10.1155/2017/2385106

Badr, A., El-Shazly, H. & Mohamed, H. 2014. cytological effects of gamma radiation and its impact on growth and yield of M1 and M2 plants of cowpea cultivars. Cytologia, 79(2): 195-206. DOI: https://doi.org/10.1508/cytologia.79.195

Borzouei, A., Kafi, M., Khazaei, H., Naseriyan, B. & Majdabadi, A. 2010. Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pakistan Journal of Botany, 42(4): 2281–2290.

Cornforth, M.N., Bedford, J.S. & Bailey, S.M. 2021. Destabilizing effects of ionizing radiation on chromosomes: Sizing up the damage. Cytogenetic Genome Research, 2021(161): 328-351. DOI: https://doi.org/10.1159/000516523

Dhole, V. & Reddy, K. 2018. Genetic analysis and variability studies in mutants induced through electron beam and gamma rays in mungbean (Vigna radiata L. Wilczek). Electronic Journal of Plant Breeding, 9(1): 304-312. DOI: https://doi.org/10.5958/0975-928X.2018.00035.2

Ebert, A. 2014. Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability, 6(1): 319-335. DOI: https://doi.org/10.3390/su6010319

Egorova, A.B., Uspenskaya, Y.A., Mithukkina, S.V. & Stravikkskaya, E.Y. 2001. Damage of cytoskeleton and cell membrane by apoptosis. Advances in Current Biology, 121: 502-510

Gebeyehu, B. 2020. Review on: Effect of seed storage period and storage environment on seed quality. International Journal of Applied Agricultural Sciences, 6(6): 185-190. DOI: https://doi.org/10.11648/j.ijaas.20200606.14

Gowthami, R., Vanniarajan, C., Souframanien, J. & Pillai, M.A. 2017. Comparison of radiosensitivity of two rice (Oryza sativa L.) varieties to gamma rays and electron beam in M1 generation. Electronic Journal of Plant Breeding, 8(3): 732-741. DOI: https://doi.org/10.5958/0975-928X.2017.00111.9

Heuzé, V., Tran, G., Bastianelli, D. & Lebas, F. 2015. Mung bean (Vigna radiata) [WWW Document]. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. URL http://www.feedipedia.org/node/235 (accessed 12.8.19)

IAEA. 2022. Mutant Variety Database [WWW Document]. URL https://mvd.iaea.org (accessed 2.27.22)

Jaipo, N., Kosiwikul, M., Panpuang, N. & Prakrajang, K. 2019. Low dose gamma radiation effects on seed germination and seedling growth of cucumber and okra. Journal of Physics: Conference Series, 1380(1): 012106. DOI: https://doi.org/10.1088/1742-6596/1380/1/012106

Jan, S., Parween, T. & Siddiqi, T. 2011. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews, 20(1): 17-39. DOI: https://doi.org/10.1139/a11-021

Kang, Y.J., Kim, S.K., Kim, M.Y., Lestari, P., Kim, K.H., Ha, B.K., Jun, T.H., Hwang, W.J., Lee, T.Y., Lee, J., Shim, S., Yoon, M.Y., Jang, Y.E., Han, K.S., Taeprayoon, P., Yoon, N., Somta, P., Tanya, P., Kim, K.S., Gwag, J.G., Moon, J.K., Lee, Y.H., Park, B.S., Bombarely, A., Doyle, J.J., Jackson, S.A., Schafleitner, R., Srinives, P., Varshney, R.K. & Lee, S.H. 2014. Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communications, 5: 5443. DOI: https://doi.org/10.1038/ncomms6443

Kozgar, M.I., Hussain, S., Wani, M.R. & Khan, S. 2014. The role of cytological aberrations in crop improvement through induced mutagenesis. In: Improvement of Crops in the Era of Climatic Changes (Vol.2). P. Ahmad, M.R. Wani, M.M. Azooz & L.S.P. Tran (Eds.). Springer. pp. 283-296. DOI: https://doi.org/10.1007/978-1-4614-8824-8_11

Lagoda, P.J.L. 2012. Effects of radiation on living cells and plants. In: Plant Mutation Breeding and Biotechnology. Q.Y. Shu, B.P. Forster & H. Nakagawa (Eds.). CABI, Vienna. pp. 133. DOI: https://doi.org/10.1079/9781780640853.0123

Minisi, F.A., El-Mahrouk, M.E., Rida, M.E.F. & Nasr, M.N. 2013. Effects of gamma radiation on germination, growth characteristics and morphological variations of Moluccella laevis L. International Handbook of Development Economics, 13(5): 696–704.

Mogotsi, K.K. 2006. Vigna radiata (L.) R. Wilczek. In: Plant Resources of Tropical Africa 1: Cereals and Pulses. M. Brink & G. Belay (Eds.). PROTA, Wageningen, Netherlands. pp. 208-213.

Nair, R. & Schreinemachers, P. 2020. Global status and economic importance of mungbean. In: The Mungbean Genome. R.M. Nair, R. Schafleitner & S.H. Lee (Eds.). Springer Nature, Cham. pp. 1-8. DOI: https://doi.org/10.1007/978-3-030-20008-4_1

Neelamkavil, S.V. & Thoppil, J.E. 2018. Chromosome aberration study of Isodon nilgherricus (Benth.) H. Hara extract using Allium cepa assay. International Journal of Development Research, 8(8): 22389-22392.

Nielen, S., Forster, B.P. & Heslop-Harrison, J.S. (2018). Mutagen effects in the first generation after seed treatment: Biological effects of mutation treatments. In: Manual on Mutation Breeding. M. Spencer-Lopes, B.P. Forster & L. Jankuloski (Eds.). Food and Agriculture Organization of the United Nations, Vienna. 105-118pp.

Norkaspi, K., Raja Zulkifli, R.O., Wahid, O. & Noor Khairani, M.B. 2013. The performance of mungbean integrated with oil palm. Malaysian Palm Oil Board Information Series, 530: 1-4

Pampalona, J., Roscioli, E., Silkworth, W.T., Bowden, B., Genescà, A., Tusell, L. & Cimini, D. 2016. Chromosome bridges maintain kinetochore-microtubule attachment throughout mitosis and rarely break during anaphase. PLoS ONE 11(1): e0147420. DOI: https://doi.org/10.1371/journal.pone.0147420

Pataczek, L., Zahir, Z.A., Ahmad, M., Rani, S., Nair, R., Schafleitner, R., Cadisch, G. & Hilger, T. 2018. Beans with benefits—the role of mungbean (Vigna radiata) in a changing environment. American Journal of Plant Sciences, 9(7): 1577. DOI: https://doi.org/10.4236/ajps.2018.97115

Patil, B.C. 1992. The induction of tetraploid in Crotalaria linifolia Linn. Cytologia 57: 247–252. DOI: https://doi.org/10.1508/cytologia.57.247

Piri, I., Babayan, M., Tavassoli, A. & Javaheri, M. 2011. The use of gamma irradiation in agriculture. African Journal of Microbiology Research, 5(32): 5806-5811. DOI: https://doi.org/10.5897/AJMR11.949

Prasath, G., Irene Vethamoni, P., Balasubramanian, P., Vanniarajan, C., Souframanien, J., Senthil, N. & Hemalatha, G. 2019. Effect of mutagenesis on germination, plant survival, pollen sterility and seed sterility in M1 generation of cluster bean (Cyamopsis tetragonaloba L.) variety MDU 1. Journal of Pharmacognosy and Phytochemistry, 8(3): 3502-3507.

Quintana, V., Alvarado, L., Saravia, D., Borjas, R., Castro-Cepero, V., Julca-Otiniano, A. & Gómez, L. 2019. Gamma radiosensitivity of coffee (Coffea arabica L. var. typica). Peruvian Journal of Agronomy, 3(2): 74-80. DOI: https://doi.org/10.21704/pja.v3i2.1317

Renjana, P.K., Anjana, S. & Thoppil, J.E. 2013. Evaluation of genotoxic effects of baking powder and monosodium glutamate using Allium cepa assay. International Journal of Pharmacy and Pharmaceutical Sciences, 5(2): 311–316.

Rozaliana, A.K., Rafidah, A.M.Y, Mohamad Roji, S. & Cheng, K.K. 2019. Vertical cultivation system for sustainable farming, in: The 2nd ICA Research Symposium Proceeding. Universiti Teknologi Malaysia, Johor, pp. 128-131.

Sabeen, M., Mahmood, Q., Ahmad Bhatti, Z., Faridullah, Irshad, M., Bilal, M., Hayat, M.T., Irshad, U., Ali Akbar, T., Arslan, M. & Shahid, N. 2020. Allium cepa assay based comparative study of selected vegetables and the chromosomal aberrations due to heavy metal accumulation. Saudi Journal of Biological Sciences, 27(5): 1368-1374. DOI: https://doi.org/10.1016/j.sjbs.2019.12.011

Sengupta, M. & Raychaudhuri, S.S. 2017. Partial alleviation of oxidative stress induced by gamma irradiation in Vigna radiata by polyamine treatment. International Journal of Radiation Biology, 93(8): 803-817. DOI: https://doi.org/10.1080/09553002.2017.1321807

Shamsiah, A, Nor Yusliza, K. & Abdul Rahim, H. 2018. The effect of gamma radiation on plant morphological characteristics of Zingiber officinale Roscoe. International Journal on Advanced Science Engineering Information Technology, 8(5): 2085-2091. DOI: https://doi.org/10.18517/ijaseit.8.5.4641

Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012: 26 pp. DOI: https://doi.org/10.1155/2012/217037

Siahpoosh, M.R., Nasrollahi, S. & Sekhavat, R. 2020. Effects of gamma radiation on mitosis and meiosis anomalies and agronomic features in M2 plants of Vicia faba cv. Saraziri. Cytologia, 85(2): 135-140. DOI: https://doi.org/10.1508/cytologia.85.135

Tah, P.R. 2006. Studies on gamma ray induced mutations in mungbean [Vigna radiata (L.) Wilczek]. Asian Journal of Plant Sciences, 5: 61-70. DOI: https://doi.org/10.3923/ajps.2006.61.70

Waterworth, W.M., Bray, C.M. & West, C.E. 2019. Seeds and the art of genome maintenance. Frontiers in Plant Science, 10: 706. DOI: https://doi.org/10.3389/fpls.2019.00706

Published

31-10-2022

How to Cite

AHMAD, L. W. Z., AZIS, N. A. N., MOHAMED YUNUS, N. ., & MOHAMAD, A. (2022). GAMMA IRRADIATION INDUCED CLASTOGENIC ABNORMALITIES IN Vigna radiata. Malaysian Applied Biology, 51(4), 37–44. https://doi.org/10.55230/mabjournal.v51i4.09

Most read articles by the same author(s)