CHARACTERIZATION AND IDENTIFICATION OF Xanthomonas spp. ISOLATED FROM INFECTED Brassicaceae AND SELECTION OF POTENTIAL XANTHAN GUM PRODUCER

https://doi.org/10.55230/mabjournal.v51i4.31

Authors

  • KHANOM SIMARANI Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya; Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya
  • NUR IZLIN SHAFINAZ BOKHARI Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya
  • HAZIQAH MOHD SALEH Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya

Keywords:

Food component, heteropolysaccharide, pseudoplastic, viscosity, xanthan gum

Abstract

Xanthomonas spp. synthesize a complex exopolysaccharide called xanthan gum, which has significant commercial value. Xanthomonas-infected vegetables exhibiting typical spot symptoms were used in this study. Isolation was done by streaking the sample suspension on the Yeast Malt agar. A colony that resembled Xanthomonas spp. was purified before a simple phenotypic test and identified using BIOLOG and 16 rRNA sequencing. The screening was done based on their performance by fermentation in a shake flask, under controlled conditions. The yield and viscosity of xanthan gum produced from each bacterium were compared to Xanthomonas campestris PV. campestris strain ATCC33913. There were 411 wild types of Xanthomonas spp. successfully isolated and ten strains were selected for xanthan gum evaluation. The results showed, the xanthan production (g/L) varied from (1.57 - 8.24) with the yield of xanthan from 0.64 to 4.71 g/g biomass. Strain C206 produced the highest xanthan gum concentration (8.24±0.20 g/L) compared to others and the control strain, ATCC 33913 (2.27±0.10g/L).   The highest yield of xanthan 4.71±0.18 (g/g biomass) was produced by strain C298 followed by strain C279 with 3.88±0.04 (g/g biomass). From our investigation, the production and yield of xanthan gum and the viscosity of the polymers were significantly dependent on the bacterial strain. Based on the stable viscosity and yield of xanthan produced, X. campestris C279 was selected for further studies on product optimization.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Becker, A., Katzen, F., Puhler, A. & Ielpi, L. 1998. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Applied Microbiology and Biotechnology, 50(2): 145-152. DOI: https://doi.org/10.1007/s002530051269

Borges, C.D. & Vendruscolo, C.T. 2008. Xanthan synthesized by strains of Xanthomonas campestris pv pruni: Production, viscosity and chemical composition. Bioscience Journal, 23.

Dai, X., Gao, G., Wu, M., Wei, W., Qu, J., Li, G. & Ma, T. 2019. Construction and application of a Xanthomonas campestris CGMCC15155 strain that produces white xanthan gum. Microbiology Open, 8(2): e00631. DOI: https://doi.org/10.1002/mbo3.631

Demirci, A.S., Palabiyik, I., Altan, D.D., Apaydın, D. & Gumus, T. 2017. Yield and rheological properties of exopolysaccharide from a local isolate: Xanthomonas axonopodis pv. vesicatoria. Electronic Journal of Biotechnology, 30: 18-23. DOI: https://doi.org/10.1016/j.ejbt.2017.08.004

Dzionek, A., Wojcieszyńska, D. & Guzik, U. 2022. Use of xanthan gum for whole cell immobilization and its impact in bioremediation-a review. Bioresource Technology, 126918. DOI: https://doi.org/10.1016/j.biortech.2022.126918

Faria, S., Vieira, P.A., Resende, M.M., Ribeiro, E.J. & Cardoso, V.L. 2010. Application of a model using the phenomenological approach for prediction of growth and xanthan gum production with sugar cane broth in a batch process. LWT-Food Science and Technology, 43(3): 498-506. DOI: https://doi.org/10.1016/j.lwt.2009.09.018

Garcia-Ochoa, F., Santos, V.E., Casas, J.A. & Gomez, E. 2000. Xanthan gum: production, recovery, and properties. Biotechnology Advances, 18(7): 549-579. DOI: https://doi.org/10.1016/S0734-9750(00)00050-1

Kassim, M. 2011. Production and characterization of the polysaccharide ‘’xanthan gum’’ by a local isolate of the bacterium Xanthomonas campestris. African Journal of Biotechnology, 10(74): 16909-16914. DOI: https://doi.org/10.5897/AJB10.973

Katzbauer, B. 1998. Properties and applications of xanthan gum. Polymer Degradation and Stability, 59(1-3): 81-84. DOI: https://doi.org/10.1016/S0141-3910(97)00180-8

KC, S., RB, M. & CN, M. 2007. Identification and characterization of strains of Xanthomonas campestris pv. Vesicatoria from Tanzania by biolog system and sensitivity to antibiotics. African Journal of Biotechnology, 6(1): 015-022.

Massomo, S., Nielsen, H., Mabagala, R.B., Mansfeld-Giese, K., Hockenhull, J. & Mortensen, C.N. 2003. Identification and characterisation of Xanthomonas campestris pv. campestris strains from Tanzania by pathogenicity tests, biolog, rep-PCR and fatty acid methyl ester analysis. European Journal of Plant Pathology, 109(8): 775-789. DOI: https://doi.org/10.1023/A:1026194402701

Moreira, A.D.S., Vendruscolo, J.L.S., Gil-Turnes, C. & Vendruscolo, C. 2001. Screening among 18 novel strains of Xanthomonas campestris pv pruni. Food Hydrocolloids, 15: 469-474. DOI: https://doi.org/10.1016/S0268-005X(01)00092-3

Palaniraj, A. & Jayaraman, V. 2011. Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106(1): 1-12. DOI: https://doi.org/10.1016/j.jfoodeng.2011.03.035

Petri, D.F. 2015. Xanthan gum: A versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science, 132(23): 42035. DOI: https://doi.org/10.1002/app.42035

Psomas, S.K., Liakopoulou-Kyriakides, M. & Kyriakidis, D.A. 2007. Optimization study of xanthan gum production using response surface methodology. Biochemical Engineering Journal, 35(3): 273-280. DOI: https://doi.org/10.1016/j.bej.2007.01.036

Salah, R.B., Chaari, K., Besbes, S., Ktari, N., Blecker, C., Deroanne, C. & Attia, H. 2010. Optimisation of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chemistry, 121(2): 627-633. DOI: https://doi.org/10.1016/j.foodchem.2009.12.077

Sharma, B., Naresh, L., Dhuldhoya, N., Merchant, S. & Merchant, U. 2006. Xanthan gum-A boon to food industry. Food Promotion Chronicle, 1(5): 27-30.

Sharma, S.K. & Sharma, R.R. 2009. Citrus canker approaching century: a review. Tree and Forestry Science and Biotechnology, 2(2): 54-56.

Silva, M.F., Fornari, R.C., Mazutti, M.A., de Oliveira, D., Padilha, F.F., Cichoski, A.J., Cansian, R.L., Di Luccio, M. & Treichel, H. 2009. Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. Journal of Food Engineering, 90(1): 119-123. DOI: https://doi.org/10.1016/j.jfoodeng.2008.06.010

Soudi, M., Alimadadi, N. & Ghadam, P. 2011. Minimal phenotypic test for simple differentiation of Xanthomonas campestris from other yellow-pigmented bacteria isolated from soil. Iranian Journal of Microbiology, 3(2): 84-91.

Torres, L. & Galindo, E. 1997. Characterization of xanthans from selected Xanthomonas strains cultivated under constant dissolved oxygen. World Journal of Microbiology and Biotechnology, 13(4): 443-451. DOI: https://doi.org/10.1023/A:1018532418417

Torrestiana, B., Fucikovsky, L. & Galindo, E. 1990. Xanthan production by some Xanthomonas isolates. Letters in Applied Microbiology, 10(2): 81-83. DOI: https://doi.org/10.1111/j.1472-765X.1990.tb00270.x

Yoo, S. D. & Harcum, S.W. 1999. Xanthan gum production from waste sugar beet pulp. Bioresource Technology, 70(1): 105-109. DOI: https://doi.org/10.1016/S0960-8524(99)00013-9

Published

31-10-2022

How to Cite

SIMARANI, K., BOKHARI, N. I. S., & MOHD SALEH, H. (2022). CHARACTERIZATION AND IDENTIFICATION OF Xanthomonas spp. ISOLATED FROM INFECTED Brassicaceae AND SELECTION OF POTENTIAL XANTHAN GUM PRODUCER. Malaysian Applied Biology, 51(4), 221–227. https://doi.org/10.55230/mabjournal.v51i4.31