Phytochemical Profiles and Mosquito-Repellent Properties of Indigenous Plants from Pak Panang District, Nakhon Si Thammarat, Thailand

https://doi.org/10.55230/mabjournal.v52i6.2629

Authors

  • Siriluk Sintupachee Program in Creative and Innovation in Science and Technology, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, 80280, Thailand https://orcid.org/0000-0003-1174-0541
  • Suppawan Promprao Program in Mathematics, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, 80280, Thailand

Keywords:

Aedes, antioxidant, herb, indigenous plant, repellent, TLC

Abstract

This study investigated the mosquito-repelling ability of folkloric indigenous plants by phytochemical extraction using three distinct methods. The phytochemical composition and antioxidant activities of the extracts were evaluated using thin-layer chromatography. The average powder weights of Citrus maxima (CM), Eleocharisdulcis plantaginea (EP), and Thespesia populnea (TP) were 154.33, 156.67, and 153.78 mg/g dry weight, respectively, and are substantially different from the other ten species (p=0.05). However, this technique did not affect the extract yield. The region of interest (ROI) values for the antioxidant activity of these three species were 328.9, 924.0, and 735.0, respectively. The repellent activities of the CM, TP, and EP extracts were significantly lower than those of DEET; however, the repellent activities of the mixed extract did not differ (p=0.05). This study found that indigenous plants commonly used in the region have mosquito-repellant and antioxidant properties. Combining the three extracts would yield the same activity as DEET, an ingredient used in commercial mosquito repellents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G. & Lightfoot, D.A. 2017. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4): 42. DOI: https://doi.org/10.3390/plants6040042

Batool, R., Khan, M.R., Sajid, M., Ali, S. & Zahra, Z. 2019. Estimation of phytochemical constituents and in vitro antioxidant potencies of Brachychiton populneus (Schott & Endl.) R.Br. BMC Chemistry, 13(1): 32. DOI: https://doi.org/10.1186/s13065-019-0549-z

Becker, N., Petrić, D., Zgomba, M., Boase, C., Madon, M.B., Dahl, C. & Kaiser, A. 2020. Mosquitoes: Identification, Ecology and Control. Springer Nature. DOI: https://doi.org/10.1007/978-3-030-11623-1

Benelli, G., Pavela, R., Rakotosaona, R., Nzekoue, F.K., Canale, A., Nicoletti, M. & Maggi, F. 2020. Insecticidal and mosquito repellent efficacy of the essential oils from stem bark and wood of Hazomalania voyronii. Journal of Ethnopharmacology, 248: 112333. DOI: https://doi.org/10.1016/j.jep.2019.112333

Brown, J.A., Larson, K.L., Lerman, S.B., Cocroft, A. & Hall, S.J. 2021. Resident perceptions of mosquito problems are more influenced by landscape factors than mosquito abundance. Sustainability, 13(20): 11533. DOI: https://doi.org/10.3390/su132011533

Castillo, R.M., Stashenko, E. & Duque, J.E. 2017. Insecticidal and repellent activity of several plant-derived essential oils against Aedes aegypti. Journal of the American Mosquito Control Association, 33(1): 25-35. DOI: https://doi.org/10.2987/16-6585.1

Connelly, C.R., Gerding, J.A., Jennings, S.M., Ruiz, A., Barrera, R., Partridge, S. & Ben Beard, C. 2020. Continuation of mosquito surveillance and control during public health emergencies and natural disasters. MMWR. Morbidity and Mortality Weekly Report, 69(28): 938-940. DOI: https://doi.org/10.15585/mmwr.mm6928a6

Chansang, U., Zahiri, N.S., Bansiddhi, J., Boonruad, T., Thongsrirak, P., Mingmuang, J., Benjapong, N., Mulla, M.S. Mosquito larvicidal activity of aqueous extracts of long pepper (Piper Retrofractum Vahl) from Thailand. Journal of Vector Ecology, 30(2): 7.

Division of Vector-Borne Diseases, Department of Disease Control, Ministry of Public Health. 2020. Guidelines for Operations on Dengue Fever [WWW Document]. URL https://webportal.bangkok.go.th/upload/user/00000319/pdf/2563/19-2-63-2.pdf (accessed 08.01.2020)

Department of Disease Control. 2020. Report of the dengue cases in Nakhon Si Thammarat Province, Thailand. Ministry of Public Health.

Ferreira-de-Lima, V.H. 2018. Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: A systematic review. Parasites & Vectors, 11: 77. DOI: https://doi.org/10.1186/s13071-018-2643-9

Haddawy, P., Wettayakorn, P., Nonthaleerak, B., Su Yin, M., Wiratsudakul, A., Schöning, J., Laosiritaworn, Y., Balla, K., Euaungkanakul, S., Quengdaeng, P., Choknitipakin, K., Traivijitkhun, S., Erawan, B. & Kraisang, T. 2019. Large scale detailed mapping of dengue vector breeding sites using street view images. PLoS Neglected Tropical Diseases, 13(7): e0007555. DOI: https://doi.org/10.1371/journal.pntd.0007555

Halberstein, R.A. 2005. Medicinal plants: Historical and cross-cultural usage patterns. Annals of Epidemiology, 15(9): 686-699. DOI: https://doi.org/10.1016/j.annepidem.2005.02.004

Haris, A., Azeem, M. & Binyameen, M. 2022. Mosquito repellent potential of Carpesium abrotanoides essential oil and its main components against a dengue vector, Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 59(3): 801-809. DOI: https://doi.org/10.1093/jme/tjac009

Gentleman, R., Carey, V., Huber, W., Irizarry, R. & Dudoit, S. 2006. Bioinformatics and computational biology solutions using R and Bioconductor. Springer Science & Business Media. DOI: https://doi.org/10.1007/0-387-29362-0

Higa, Y. 2011. Dengue vectors and their spatial distribution. Tropical Medicine and Health, 39(4SUPPLEMENT): S17-S27. DOI: https://doi.org/10.2149/tmh.2011-S04

Jesionek, W., Majer-Dziedzic, B. & Choma, I.M. 2015. Separation, identification, and investigation of antioxidant ability of plant extract components using TLC, LC–MS, and TLC–dpph•. Journal of Liquid Chromatography & Related Technologies, 38(11): 1147-1153. DOI: https://doi.org/10.1080/10826076.2015.1028295

Khater, H.F., Govindarajan, M., Vaz, N.P., Murugan, K., Abouelella, N.A., Abouelella, G.A. & Selim, A.M. 2022. Commercial mosquito repellents and their safety concerns. IntechOpen.

Lupi, E., Hatz, C. & Schlagenhauf, P. 2013. The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. – A literature review. Travel Medicine and Infectious Disease, 11(6): 374-411. DOI: https://doi.org/10.1016/j.tmaid.2013.10.005

Marques-Toledo, C.A., Bendati, M.M., Codeço, C.T. & Teixeira, M.M. 2019. Probability of dengue transmission and propagation in a non-endemic temperate area: Conceptual model and decision risk levels for early alert, prevention and control. Parasites & Vectors, 12: 38. DOI: https://doi.org/10.1186/s13071-018-3280-z

Martini, M., Armen, Z., Nissa, K., Retno, H., Sri, Y., Atik, M. & Susiana, P. 2020. Entomological status based on vector density index and Transovarial infection on Aedes sp. mosquito in Meteseh village, Semarang city. E3S Web of Conferences, 202: 12016. DOI: https://doi.org/10.1051/e3sconf/202020212016

Masuadi, E., Mohamud, M., Almutairi, M., Alsunaidi, A., Alswayed, A.K. & Aldhafeeri, O.F. 2021. Trends in the usage of statistical software and their associated study designs in health sciences research: A bibliometric analysis. Cureus, 13(1): e12639. DOI: https://doi.org/10.7759/cureus.12639

Mint Mohamed Lemine, A., Ould Lemrabott, M.A., Hasni Ebou, M., Mint Lekweiry, K., Ould Ahmedou Salem, M.S., Ould Brahim, K., Ouldabdallahi Moukah, M., Ould Bouraya, I.N., Brengues, C., Trape, J., Basco, L., Bogreau, H., Simard, F., Faye, O. & Ould Mohamed Salem Boukhary, A. 2017. Mosquitoes (Diptera: Culicidae) in Mauritania: A review of their biodiversity, distribution and medical importance. Parasites & Vectors, 10(1): 35. DOI: https://doi.org/10.1186/s13071-017-1978-y

Morales-Pérez, A., Nava-Aguilera, E., Hernández-Alvarez, C., Alvarado-Castro, V. M., Arosteguí, J., Legorreta-Soberanis, J., Flores-Moreno, M., Morales-Nava, L., Harris, E., Ledogar, R. J., Andersson, N. & Cockcroft, A. 2020. Utility of entomological indices for predicting transmission of dengue virus: Secondary analysis of data from the Camino Verde trial in Mexico and Nicaragua. PLoS Neglected Tropical Diseases, 14(10): e0008768. DOI: https://doi.org/10.1371/journal.pntd.0008768

Muangmoon, R., Junkum, A., Chaithong, U., Jitpakdi, A., Riyong, D., Wannasan, A., Somboon, P. & Pitasawat, B. 2018. Natural larvicides of botanical origin against dengue vector Aedes aegypti (Diptera: Culicidae). Southeast Asian Journal of Tropical Medicine and Public Health, 49(2): 227–239.

Murugan, K., Mahesh Kumar, P., Kovendan, K., Amerasan, D., Subrmaniam, J. & Hwang, J. 2012. Larvicidal, pupicidal, repellent and adulticidal activity of citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research, 111(4): 1757-1769. DOI: https://doi.org/10.1007/s00436-012-3021-8

Nagao, Y., Tawatsin, A., Thammapalo, S. & Thavara, U. 2011. Geographical gradient of mean age of dengue haemorrhagic fever patients in northern Thailand. Epidemiology and Infection, 140(3): 479-490. DOI: https://doi.org/10.1017/S0950268811000653

Nair, J.J. & Van Staden, J. 2014. Traditional usage, phytochemistry and pharmacology of the South African medicinal plant Boophone disticha (L.f.) herb. (Amaryllidaceae). Journal of Ethnopharmacology, 151(1): 12-26. DOI: https://doi.org/10.1016/j.jep.2013.10.053

Namir, H., Hadzic, R., Malesevic, I., Jurcevi, M. & Starcevic, E. 2019. Application of thin layer chromatography for qualitative analysis of gunpowder in purpose of life prediction of ammunition. International Journal of Biosensors & Bioelectronics, 5(1): 4-12. DOI: https://doi.org/10.15406/ijbsbe.2019.05.00144

Ounlert, P. & Sdoodee, S. 2015. The effects of climatic variability on mangosteen flowering date in southern and eastern of Thailand. Research Journal of Applied Sciences, Engineering and Technology, 11(6): 617-622. DOI: https://doi.org/10.19026/rjaset.11.2021

Prakoso, N.I., Azizah, U., Zakiyah, Z.N., Nita, M.T., Liyanita, A. & Suputa, S. 2018. An investigation of insect ovipositing repellent activity of Andrographis paniculata Ness, Acacia auriculiformis and Piper betle Linn leaves extracts to Batrocera carambolae. Jurnal Eksakta, 18(1): 1-7. DOI: https://doi.org/10.20885/eksakta.vol18.iss1.art1

Rattanarithikul R. 1982. A guide to the genera of mosquitoes (Diptera: Culicidae) of Thailand with illustrated keys, biological notes and preservation and mounting techniques. Mosquito Systematics, 14(3): 139–208.

Reich, E. & Widmer, V. 2008. Plant analysis 2008 – Planar chromatography. Planta Medica, 75(07): 711-718. DOI: https://doi.org/10.1055/s-0028-1088389

Romeo-Aznar, V., Paul, R., Telle, O. & Pascual, M. 2018. Mosquito-borne transmission in urban landscapes: The missing link between vector abundance and human density. Proceedings of the Royal Society B: Biological Sciences, 285(1884): 20180826. DOI: https://doi.org/10.1098/rspb.2018.0826

Rueda, L.M. 2004. Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Magnolia Press, Auckland. DOI: https://doi.org/10.11646/zootaxa.589.1.1

Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T. & Eliceiri, K.W. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1): 529. DOI: https://doi.org/10.1186/s12859-017-1934-z

Sareein, N., Phalaraksh, C., Rahong, P., Techakijvej, C., Seok, S. & Bae, Y.J. 2019. Relationships between predatory aquatic insects and mosquito larvae in residential areas in northern Thailand. Journal of Vector Ecology, 44(2): 223-232. DOI: https://doi.org/10.1111/jvec.12353

Tanaka, M.J., Gryzlak, B.M., Bridget Zimmerman, M., Nisly, N.L. & Wallace, R.B. 2008. Patterns of natural herb use by Asian and Pacific Islanders. Ethnicity & Health, 13(2): 93-108. DOI: https://doi.org/10.1080/13557850701830349

Teanpaisan, R., Kawsud, P., Pahumunto, N. & Puripattanavong, J. 2017. Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. Journal of Traditional and Complementary Medicine, 7(2): 172-177. DOI: https://doi.org/10.1016/j.jtcme.2016.06.007

Triana, D., Siregar, F.N., Tri Utami, E.P., Suteky, T. & Wicaksono, S. 2021. Entomological parameters and characterization of insecticide resistance in dengue vector Aedes aegypti larvae from Bengkulu city, Indonesia. Malaysian Journal of Public Health Medicine, 21(1): 96-102. DOI: https://doi.org/10.37268/mjphm/vol.21/no.1/art.467

Visakh, N.U., Pathrose, B., Narayanankutty, A., Alfarhan, A. & Ramesh, V. 2022. Utilization of pomelo (Citrus maxima) peel waste into Bioactive essential oils: Chemical composition and Insecticidal properties. Insects, 13(5): 480. DOI: https://doi.org/10.3390/insects13050480

Wiwanitkit, V. 2011. Thai ethnopharmacological herbs for diabetes treatment: Data collection and informatics tracing for therapeutic property. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 5(2): 103-104. DOI: https://doi.org/10.1016/j.dsx.2012.02.005

World Health Organization. 2009. Guidelines for efficacy testing of mosquito repellents for human skin [WWW Document]. URL https://apps.who.int/iris/handle/10665/70072. (accessed 04.21.2009)

Published

30-12-2023

How to Cite

Sintupachee, S., & Promprao, S. . (2023). Phytochemical Profiles and Mosquito-Repellent Properties of Indigenous Plants from Pak Panang District, Nakhon Si Thammarat, Thailand. Malaysian Applied Biology, 52(6), 81–90. https://doi.org/10.55230/mabjournal.v52i6.2629

Issue

Section

Research Articles