Efficiency of Microalgae Cultivation Automated System: A Case Study of Green Algae Chlorella ellipsoidea TISTR 8260

https://doi.org/10.55230/mabjournal.v52i3.2665

Authors

  • Suradat Theerapisit Program in Creative Innovation in Science and Technology, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University
  • Somrank Rodjaroen Program in Agriculture Innovation in Science and Technology, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University
  • Siriluk Sintupachee Program in Creative Innovation in Science and Technology, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University https://orcid.org/0000-0003-1174-0541

Keywords:

aquaculture, growth rate, microalgae, automated cabinet

Abstract

Microalgae play an important economic role as aquaculture feed. This study aimed to create an automated algae cultivation system with variable light intensity for the culture of Chlorella ellipsoidea strain TISTR 8260. The automated cabinet could work continuously for at least 30 days, with the growth rates of microalgae in culture systems with light intensities of 1000 Lux, 3000 Lux, and 5000 Lux peaking on day 14, whereas the fluorescent control showed peak microalgae growth on day 6. On day 30, the biomass harvested from microalgae grown in 1000 Lux, 3000 Lux, 5000 Lux, and fluorescent control was 0.1935 ± 0.151 mg/L, 0.1996 ± 0.220 mg/L, 0.2041 ± 0.159 mg/L, and 0.0674 ± 0.191 mg/L, respectively, which was not significantly different between the groups but significantly higher than the control (P-value = 0.05, DF = 3, F(3,36) = 7). The automated algae cabinet with a light intensity of 5000 Lux and a rotation speed of 150 r.p.m produced the maximum biomass, which was three times that produced by a fluorescent light source.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Amini Khoeyi, Z., Seyfabadi, J. & Ramezanpour, Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture, 20: 41–49. DOI: https://doi.org/10.1007/s10499-011-9440-1

Bialevich, V., Zachleder, V. & Bišová, K. 2022. The Effect of variable light source and light intensity on the growth of three algal species. Cells, 11(8): 1293. DOI: https://doi.org/10.3390/cells11081293

Bošnjakovic, M. & Sinaga, N. 2020. The perspective of large-scale production of algae biodiesel. Applied Sciences, 10(22): 8181. DOI: https://doi.org/10.3390/app10228181

Carvalho, J., Bittencourt Sydney, E., Ferrari Assú Tessari, L. & Ricardo Soccol, C. 2019b. Chapter 2 - Culture media for mass production of microalgae. In: Biofuels from Algae. A. Pandey, J.-S. Chang, C. Ricardo Soccol and D.-J. Lee (Eds.). Elsevier. pp. 33-50. DOI: https://doi.org/10.1016/B978-0-444-64192-2.00002-0

Carvalho, D.V. & Pereira, E.M., Cardoso, J.S. 2019a. Machine learning interpretability: A survey on methods and metrics. Electronics, 8: 832. DOI: https://doi.org/10.3390/electronics8080832

Chandra, R., Amit & Ghosh, U.K. 2019. Effects of various abiotic factors on biomass growth and lipid yield of Chlorella minutissima for sustainable biodiesel production. Environmental Science and Pollution Research, 26: 3848–3861. DOI: https://doi.org/10.1007/s11356-018-3696-1

Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. & Das, K.C. 2009. Biomass production potential of a wastewater alga Chlorella vulgaris ARC1 under elevated levels of CO2 and temperature. International Journal of Molecular Sciences, 10: 518-532. DOI: https://doi.org/10.3390/ijms10020518

Cho, S.H., Ji, S.C., Hur, S.B., Bae, J., Park, I.-S. & Song, Y.-C. Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculate. Fisheries Science, 73: 1050–1056. DOI: https://doi.org/10.1111/j.1444-2906.2007.01435.x

Dawczynski, C., Schubert, R. & Jahreis, G. 2007. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 103(3): 891-899. https://doi.org/10.1016/j.foodchem.2006.09.041 DOI: https://doi.org/10.1016/j.foodchem.2006.09.041

Doucha, J., Straka, F., Lívanský, K. 2005. Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin layer photobioreactor. Journal of Applied Phycology, 17: 403–412. DOI: https://doi.org/10.1007/s10811-005-8701-7

Gifford, S., Dunstan, RH., O'Connor, W., Koller, CE. & MacFarlane, G.R. 2007. Aquatic zooremediation: Deploying animals to remediate contaminated aquatic environments. Trends in Biotechnology, 25(2): 60-65. DOI: https://doi.org/10.1016/j.tibtech.2006.12.002

Guo, R., Xie, W. & Chen, J. 2015. Assessing the combined effects from two kinds of cephalosporins on green alga (Chlorella pyrenoidosa) based on response surface methodology. Food and Chemical Toxicology, 78: 116-121. DOI: https://doi.org/10.1016/j.fct.2015.02.007

Henshall, Ed., Campean, F. & Rutter, B. 2017. A systems approach to the development of enhanced learning for engineering systems design analysis. Procedia CIRP, 60: 530-535. DOI: https://doi.org/10.1016/j.procir.2017.01.020

Huesemann, M., Dale, T., Chavis, A., Crowe, B., Twary, S., Barry, A., Valentine, D., Yoshida, R., Wigmosta, M. & Cullinan, V., 2017. Simulation of outdoor pond cultures using indoorLED-lighted and temperature-controlled raceway ponds and Phenometrics photobioreactors. Algal Research, 21: 178-190. DOI: https://doi.org/10.1016/j.algal.2016.11.016

Jankovska, V. & Komarek, J. 2000. Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobot, 35: 59–82. DOI: https://doi.org/10.1007/BF02803087

Javed UL Islam, Er., Prashant Chauhan, Ar., SahaiMeena, G. & Singh, C. 2021. A Comparison review on architectural design software. International Research Journal of Engineering and Technology, 08(06): 1416-1419.

Koc, C., Anderson, G.A. & Komareddy, A. 2010. Use of red and blue light-emitting diodes (LED) and fluorescent lamps to grow microalgae in a photobioreactor. The Israeli Journal of Aquaculture Bamidgeh, 65: 1-8.

Lara, M. Schuijt Tamara, J.H.M., Bergen, V., Leon, P.M., Alfons, L., Smolders, J.P. & Verdonschot, P.F.M. 2021. Aquatic worms (Tubificidae) facilitate productivity of macrophyte Azolla filiculoides in a wastewater biocascade system. Science of The Total Environment 787: 188– 192. DOI: https://doi.org/10.1016/j.scitotenv.2021.147538

Levin, G., Kulikovsky, S., Liveanu, V., Eichenbaum, B., Meir, A., Isaacson, T., Tadmor, Y., Adir, N. & Schuster, G. 2021. The desert green algae Chlorella ohadii thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. The Plant Journal, 106(5): 1260-1277. DOI: https://doi.org/10.1111/tpj.15232

Madiha, A., Ani, I., Ataullah, B. & Suzana, W. 2013. Intensity of blue LED light: A potential stimulus for biomass and lipid content in freshwater microalgae Chlorella vulgaris. Bioresource Technology, 148:373-378. DOI: https://doi.org/10.1016/j.biortech.2013.08.162

Mahmood, A. & Ali, S. 2017. Microbial and Viral Contamination of Animal and Stem Cell Cultures: Common Contaminants. Detection and Elimination. Journal of Stem Cell Research & Therapeutics, 2(5): 78-85. DOI: https://doi.org/10.15406/jsrt.2017.02.00078

Mandotra, S.K., Pankaj, K., Suseela, M.R. & Ramteke, P.W. 2014. Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production. Bioresource Technology,156: 42-47. DOI: https://doi.org/10.1016/j.biortech.2013.12.127

Matthew, F.B., Bahareh, K. & Veera, G.G. 2014. Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 1: 665-674. DOI: https://doi.org/10.1016/j.jece.2013.11.005

Muys, M., Sui, Y., Schwaiger, B., Lesueur, C., Vandenheuvel, D., Vermeir, P. & Vlaeminck, S.E. 2019. High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology, 275: 247-257. DOI: https://doi.org/10.1016/j.biortech.2018.12.059

Nguyen Thuy, L.C., Pham, A.D., Thangavel, M. & Arivalagan, P. 2019. Evaluating the potential of green alga Chlorella sp. for high biomass and lipid production in biodiesel viewpoint. Biocatalysis and Agricultural Biotechnology, 17: 184-188. DOI: https://doi.org/10.1016/j.bcab.2018.11.011

Parniakov, O., Toepfl, S., Barba, FJ., Granato, D., Zamuz, S., Galvez, F. & Lorenzo, J.M. 2018. Impact of the soy protein replacement by legumes and algae-based proteins on the quality of chicken rotti. Journal of Food Science and Technology, 55: 2552–2559. DOI: https://doi.org/10.1007/s13197-018-3175-1

Prabakarana, G., Moovendhana, M., Arumugama, A., Matharasia, A., Dineshkumara, R. & Sampathkumar, P. 2018. Quantitative analysis of phytochemical profile in marine microalgae Chlorella vulgaris. International Journal of Pharmacy and Biological Sciences, 8(2): 562 – 565.

Rasheed, R., Saadaoui, I., Bounnit, T., Cherif, M., Al Ghazal, G. & Al Jabri, H. 2020. Sustainable food production and nutraceutical applications from Qatar desert Chlorella sp. (Chlorophyceae). Animals, 10(8): 1-16. DOI: https://doi.org/10.3390/ani10081413

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Sabzalian, M.R., Heydarizadeh, P., Zahedi, M., Boroomand, A., Agharokh, M., Sahba, M.R. & Schoefs, B. 2014. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agronomy for Sustainable Development, 34: 879–886. DOI: https://doi.org/10.1007/s13593-014-0209-6

Satthong, S., Saego, K., Kitrungloadjanaporn, P., Nuttavut, N., Amornsamankul, M. & Triampo, W. 2019. Modeling the effects of light sources on the growth of algae. Advances in Continuous and Discrete Models, 2019: 170. DOI: https://doi.org/10.1186/s13662-019-2112-6

Seyfabadi, J., Ramezanpour, Z. & Amini Khoeyi, Z. 2011. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23: 721–726. DOI: https://doi.org/10.1007/s10811-010-9569-8

Tang, D., Han, W., Li, P., Miao, X. & Zhong, J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102: 3071-3076. DOI: https://doi.org/10.1016/j.biortech.2010.10.047

Vani, S., David, K. & Albert, K. 2011. Carbon dioxide fixation by Chlorella minutissima batch cultures in a stirred tank bioreactor. Biotechnology and Biotechnological Equipment, 25(3): 2468-2476. DOI: https://doi.org/10.5504/BBEQ.2011.0058

Yasmeen, N., Sanghyun, J. & TorOve, L. 2017. Nutrient utilization and oxygen production by Chlorella vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system, Bioresource Technology, 237: 64-71. DOI: https://doi.org/10.1016/j.biortech.2017.02.057

Published

30-09-2023

How to Cite

Theerapisit, S., Rodjaroen, S., & Sintupachee, S. (2023). Efficiency of Microalgae Cultivation Automated System: A Case Study of Green Algae Chlorella ellipsoidea TISTR 8260. Malaysian Applied Biology, 52(3), 87–95. https://doi.org/10.55230/mabjournal.v52i3.2665

Issue

Section

Research Articles